Bài 4 trang 59 sách bài tập toán 10 - Chân trời sáng tạo

Đề bài

Cho tam giác ABC có tọa độ các đỉnh là \(A\left( {1;3} \right),B\left( {3;1} \right),C\left( {6;4} \right)\)

a) Tính độ dài ba cạnh của tam giác ABC và số đo của góc B

b) Tìm tọa độ tâm I của đường tròn ngoại tiếp của tam giác ABC

Phương pháp giải - Xem chi tiết

Cho hai vectơ \(\overrightarrow a  = \left( {{a_1},{a_2}} \right),\overrightarrow b  = \left( {{b_1},{b_2}} \right)\) và hai điểm \(A\left( {{x_A},{y_A}} \right),B\left( {{x_B},{y_B}} \right)\). Ta có:

+ \(AB = \sqrt {{{\left( {{x_A} - {x_B}} \right)}^2} + {{\left( {{y_A} - {y_B}} \right)}^2}} \)

+ \(cos\left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|}} = \frac{{{a_1}{a_2} + {a_2}{b_2}}}{{\sqrt {{a_1}^2 + {a_2}^2} .\sqrt {{b_1}^2 + {b_2}^2} }}\)

- Tâm I của đường tròn ngoại tiếp tam giác ABC là điểm cách đều ba điểm A, B, C

Lời giải chi tiết

Cho tam giác ABC có tọa độ các đỉnh là \(A\left( {1;3} \right),B\left( {3;1} \right),C\left( {6;4} \right)\)

a) Tính độ dài ba cạnh của tam giác ABC và số đo của góc B

\(\begin{array}{l}\overrightarrow {AB}  = \left( {2; - 2} \right) \Rightarrow AB = \sqrt {{2^2} + {{\left( { - 2} \right)}^2}}  = 2\sqrt 2 \\\overrightarrow {BC}  = \left( {3;3} \right) \Rightarrow BC = \sqrt {{3^2} + {3^2}}  = 3\sqrt 2 \\\overrightarrow {AC}  = \left( {5;1} \right) \Rightarrow AC = \sqrt {{5^2} + {1^2}}  = \sqrt {26} \end{array}\)

+ \(cos\left( B \right) = \left| {cos\left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right)} \right| = \frac{{2.3 - 2.3}}{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{3^2} + {3^2}} }} = 0 \Rightarrow \widehat B = {90^ \circ }\)

b) Tam giác ABC vuông tại B có I là tâm của đường tròn ngoại tiếp của tam giác ABC nên I là trung điểm của AC

\( \Rightarrow I\left( {\frac{{1 + 6}}{2};\frac{{3 + 4}}{2}} \right) \Rightarrow I\left( {\frac{7}{2};\frac{7}{2}} \right)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved