1. Nội dung câu hỏi
Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\). Tam giác ABC vuông tại A, \(\widehat {ABC} \) \( = {30^0}\), \(AC \) \( = a,SA \) \( = \frac{{a\sqrt 3 }}{2}\). Tính số đo góc phẳng nhị diện \(\left[ {S,BC,A} \right]\).
2. Phương pháp giải
+ Sử dụng kiến thức về góc nhị diện: Cho hai nửa mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{Q_1}} \right)\) có chung bờ là đường thẳng d. Hình tạo bởi \(\left( {{P_1}} \right)\), \(\left( {{Q_1}} \right)\) và d được gọi là góc nhị diện tạo bởi \(\left( {{P_1}} \right)\) và \(\left( {{Q_1}} \right)\), kí hiệu \(\left[ {{P_1},d,{Q_1}} \right]\).
+ Sử dụng kiến thức về góc phẳng nhị diện để tính: Góc phẳng nhị diện của góc nhị diện có đỉnh nằm trên cạnh của nhị diện, có hai cạnh lần lượt nằm trên hai mặt của nhị diện và vuông góc với cạnh của nhị diện.
3. Lời giải chi tiết
Vẽ \(AH \bot BC\left( {H \in BC} \right)\).
Vì \(SA \bot \left( {ABC} \right) \) \( \Rightarrow SA \bot BC\), mà \(AH \bot BC\) nên \(BC \bot \left( {SHA} \right)\)
Do đó, \(SH \bot BC\) nên góc SHA là góc phẳng nhị diện \(\left[ {S,BC,A} \right]\)
Tam giác AHC vuông tại C nên \(AH \) \( = AC.\sin \widehat {ACB} \) \( = a.\sin {60^0} \) \( = \frac{{a\sqrt 3 }}{2}\)
Vì \(SA \bot \left( {ABC} \right)\) nên \(SA \bot AH \) \( \Rightarrow \widehat {SAH} \) \( = {90^0}\), mà \(AH \) \( = SA\left( { = \frac{{a\sqrt 3 }}{2}} \right)\) nên tam giác SAH vuông cân tại A. Do đó, \(\widehat {SHA} \) \( = {45^0}\).
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương VI - Hóa học 11
CHƯƠNG 2. CẢM ỨNG
Chủ đề 6. Lịch sử bảo vệ chủ quyền, các quyền và lợi ích hợp pháp của Việt Nam ở Biển Đông
Chủ đề 3. Sinh trưởng và phát triển ở sinh vật
Chương 6. Hidrocacbon không no
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11