Đề bài
Thang leo gợn song cho trẻ em trong công viên có hai khung thép cong hình nửa elip cao 100 m và khoảng cách giữa hai chân là 240 cm
a) Hãy chọn hệ tọa độ thích hợp và viết phương trình chính tắc của elip nói trên
b) Tính khoảng cách thẳng đứng từ một điểm cách chân khủng 20 cm lên đến khung thép
Phương pháp giải - Xem chi tiết
Phương trình Elip có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} - {b^2}} \)
Lời giải chi tiết
a) Gọi phương trình chính tắc của elip là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)
nửa hình elip cao 100 cm \( \Rightarrow b = 100\)
Khoảng cách giữa hai chân là 240 cm \( \Rightarrow 2a = 240 \Leftrightarrow a = 120\)
Vậy phương trình chính tắc của elip là \(\frac{{{x^2}}}{{{{120}^2}}} + \frac{{{y^2}}}{{{{100}^2}}} = 1\)
b)
Điểm cách chân 20 cm có hoành độ là \(\left| x \right| = 120 - 20 = 100\)
Thay vào phương trình ta có:
\(\frac{{{{100}^2}}}{{{{120}^2}}} + \frac{{{y^2}}}{{{{100}^2}}} = 1 \Rightarrow {y^2} = {100^2}\left( {1 - \frac{{{{100}^2}}}{{{{120}^2}}}} \right) \Rightarrow y \approx 55\left( {cm} \right)\)
Vậy khoảng cách thẳng đứng từ điểm đó đến khung thép xấp xỉ 55cm.
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10