Đề bài
Phủ định của mệnh đề “\(\exists x \in \mathbb{R},{x^2} - x + 1 < 0\)” là mệnh đề:
A. “\(\forall x \in \mathbb{R},{x^2} - x + 1 \ge 0\)”
B. “\(\forall x \in \mathbb{R},{x^2} - x + 1 < 0\)”
C. “\(\forall x \in \mathbb{R},{x^2} - x + 1 > 0\)”
D. “\(\exists x \in \mathbb{R},{x^2} - x + 1 \ge 0\)”
Phương pháp giải - Xem chi tiết
Mệnh đề phủ định của mệnh đề “\(\exists x \in X,P(x)\)” là “\(\forall x \in X,\overline {P(x)} \)”
Lời giải chi tiết
Mệnh đề phủ định của mệnh đề “\(\exists x \in \mathbb{R},{x^2} - x + 1 < 0\)” là “\(\forall x \in \mathbb{R},{x^2} - x + 1 \ge 0\)”
Chọn A.
Unit 7: Viet Nam and international organisations
Người cầm quyền khôi phục uy quyền
Toán 10 tập 2 - Kết nối tri thức với cuộc sống
Chuyên đề 2: Hóa học trong việc phòng chống cháy nổ
Dục Thúy sơn
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10