Giải bài 4 trang 81 sách bài tập toán 10 - Chân trời sáng tạo

Đề bài

Cho \(\Delta ABC\) có \(\widehat A = 99^\circ ,b = 6,c = 10\). Tính:

a) Diện tích tam giác ABC

b) Bán kính đường tròn ngoại tiếp và bán kính đường tròn nội tiếp tam giác ABC

Lời giải chi tiết

a) Áp dụng định lí sin vào tam giác ABC ta có:

\({S_{ABC}} = \frac{1}{2}bc\sin A = \frac{1}{2}.6.10.\sin 99^\circ  \simeq 29,63\) (đvdt)

b) Áp dụng định lí côsin ta tính được:

\(a = \sqrt {{b^2} + {c^2} - 2bc\cos A}  = \sqrt {{6^2} + {{10}^2} - 2.6.10\cos 99^\circ }  \simeq 12,44\)

Bán kính đường tròn ngoại tiếp tam giác ABC là:

\(R = \frac{{abc}}{{4S}} \simeq \frac{{12,44.6.10}}{{4.29,63}} \simeq 6,25\)

Bán kính đường tròn nội tiếp tam giác là:

\(r = \frac{S}{p} = \frac{{29,63}}{{\frac{{\left( {12,44 + 6 + 10} \right)}}{2}}} \simeq 2,084\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved