Toán 7 tập 2 - Cánh diều

Giải bài 4 trang 92 SGK Toán 7 tập 2 - Cánh diều

Đề bài

Cho Hình 67 có \(\widehat {AHD} = \widehat {BKC} = 90^\circ ,DH = CK,\widehat {DAB} = \widehat {CBA}\). Chứng minh AD = BC.

 

 

Phương pháp giải - Xem chi tiết

Chứng minh tam giác AHD bằng tam giác BKC.

 

 

Lời giải chi tiết

Ta có: \(\widehat {DAB} = \widehat {CBA}\)

Mà \(\widehat {DAB} +\widehat {HAD} =180^0; \widehat {CBA}= \widehat {KBC}\) (2 góc kề bù)

\(\Rightarrow \widehat {HAD} = \widehat {KBC}\) 

Mà tổng ba góc trong tam giác bằng 180° và \(\widehat {AHD} = \widehat {BKC} = 90^\circ ,\widehat {HAD} = \widehat {KBC}\) nên \(\widehat {ADH} = \widehat {BCK}\).

Xét tam giác AHD và tam giác BKC có:

     \(\widehat {AHD} = \widehat {BKC}\);

     HD = KC;

     \(\widehat {ADH} = \widehat {BCK}\).

Vậy \(\Delta AHD = \Delta BKC\)(g.c.g) nên AD = BC ( 2 cạnh tương ứng)

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved