Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Ôn tập chương III. Hệ hai phương trình bậc nhất hai ẩn
Bài 1. Hàm số bậc hai y=ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số bậc hai
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Bài tập ôn chương IV. Hàm số y=ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Dùng hệ thức Vi-ét để tìm nghiệm \(x_2\) của phương trình rồi tìm giá trị của \(m\) trong mỗi trường hợp sau:
LG a
LG a
Phương trình \({x^2} + mx - 35 = 0\), biết nghiệm \(x_1= 7\).
Phương pháp giải:
Áp dụng hệ thức Vi-ét:
- Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:
\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)
Lời giải chi tiết:
Phương trình \({x^2} + mx - 35 = 0\) có nghiệm \(x_1= 7\).
Theo hệ thức Vi-ét ta có: \({x_1}{x_2} = - 35 \)
\(\Rightarrow 7{x_2} = - 35 \Leftrightarrow {x_2} = - 5\)
Theo hệ thức Vi-ét ta có:
\(\eqalign{
& {x_1} + {x_2} = - m \cr
& \Rightarrow - m = 7 + \left( { - 5} \right) \cr&\Leftrightarrow - m = 2\cr& \Leftrightarrow m = - 2 \cr} \)
Vậy \(m = -2\) thì phương trình \({x^2} + mx - 35 = 0\) có nghiệm \(x_1= 7\) và nghiệm \(x_2= -5\).
LG b
LG b
Phương trình \({x^2} - 13x + m = 0,\) biết nghiệm \(x_1 = 12,5\).
Phương pháp giải:
Áp dụng hệ thức Vi-ét:
- Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:
\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)
Lời giải chi tiết:
Phương trình \({x^2} - 13x + m = 0\) có nghiệm \(x_1 = 12,5\).
Theo hệ thức Vi-ét ta có: \({x_1} + {x_2} = 13 \)
\(\Rightarrow 12,5 + {x_2} = 13 \Leftrightarrow {x_2} = 0,5\)
Theo hệ thức Vi-ét ta có: \({x_1}{x_2} = m\) \( \Rightarrow m = 12,5.0,5 = 6,25\)
Vậy \( m = 6,25 \) thì phương trình \({x^2} - 13x + m = 0\) có nghiệm \(x_1= 12,5\) và nghiệm \(x_2= 0,5\).
LG c
LG c
Phương trình \(4{x^2} + 3x - {m^2} + 3m = 0,\) biết nghiệm \(x_1 = -2\).
Phương pháp giải:
Áp dụng hệ thức Vi-ét:
- Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:
\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)
Lời giải chi tiết:
Phương trình \(4{x^2} + 3x - {m^2} + 3m = 0\) có nghiệm \(x_1= -2\).
Theo hệ thức Vi-ét ta có: \(\displaystyle {x_1} + {x_2} = - {3 \over 4}\)
\(\displaystyle\Rightarrow - 2 + {x_2} = - {3 \over 4} \)
\(\displaystyle \Leftrightarrow {x_2}= - {3 \over 4}+2= {5 \over 4}\)
Theo hệ thức Vi-ét ta có: \(\displaystyle{x_1}{x_2} = {{ - {m^2} + 3m} \over 4}\)
\( \displaystyle \Rightarrow -2.{5 \over 4} = {{ - {m^2} + 3m} \over 4}\)
\(\displaystyle \Leftrightarrow {m^2} - 3m - 10 = 0 \)
\( \displaystyle \Delta _m= {\left( { - 3} \right)^2} - 4.1.\left( { - 10} \right)\)\(\, = 9 + 40 = 49 > 0 \)
\( \Rightarrow \sqrt \Delta_m = \sqrt {49} = 7 \)
\( \displaystyle {m_1} = {{3 + 7} \over {2.1}} = 5 \)
\( \displaystyle {m_2} = {{3 - 7} \over {2.1}} = - 2 \)
Vậy \(m = 5\) hoặc \(m = -2\) thì phương trình \(4{x^2} + 3x - {m^2} + 3m = 0\) có nghiệm \(x_1= -2\) và nghiệm \(\displaystyle {x_2} = {5 \over 4}\).
LG d
LG d
Phương trình \(3{x^2} - 2\left( {m - 3} \right)x + 5 = 0,\) biết nghiệm \(\displaystyle {x_1} = {1 \over 3}\).
Phương pháp giải:
Áp dụng hệ thức Vi-ét:
- Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:
\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)
Lời giải chi tiết:
Phương trình \(3{x^2} - 2\left( {m - 3} \right)x + 5 = 0\) có nghiệm \(\displaystyle{x_1} = {1 \over 3}\) .
Theo hệ thức Vi-ét ta có: \(\displaystyle {x_1}{x_2} = {5 \over 3} \)
\(\displaystyle \Rightarrow {1 \over 3}{x_2} = {5 \over 3} \Leftrightarrow {x_2} = 5\)
Theo hệ thức Vi-ét ta có: \(\displaystyle {x_1} + {x_2} = {{2\left( {m - 3} \right)} \over 3}\)
\(\displaystyle \Rightarrow {1 \over 3} + 5 = {{2\left( {m - 3} \right)} \over 3}\)
\(\displaystyle \Leftrightarrow 2\left( {m - 3} \right) = 16 \)
\(\displaystyle \Leftrightarrow m - 3 = 8 \Leftrightarrow m = 11\)
Vậy \(m = 11\) thì phương trình \(3{x^2} - 2\left( {m - 3} \right)x + 5 = 0\) có nghiệm \(\displaystyle{x_1} = {1 \over 3}\) và nghiệm \({x_2} = 5\).
Bài 23
Bài 15: Vì phạm pháp luật và trách nhiệm pháp lí của công dân
PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 1
Đề thi vào 10 môn Toán Tiền Giang
Bài 29