PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 2

Bài 40 trang 57 SBT toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Dùng hệ thức Vi-ét để tìm nghiệm \(x_2\) của phương trình rồi tìm giá trị của \(m\) trong mỗi trường hợp sau:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

LG a

Phương trình \({x^2} + mx - 35 = 0\), biết nghiệm \(x_1= 7\).

Phương pháp giải:

Áp dụng hệ thức Vi-ét:

- Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:

\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)

Lời giải chi tiết:

Phương trình \({x^2} + mx - 35 = 0\) có nghiệm \(x_1= 7\).

Theo hệ thức Vi-ét ta có: \({x_1}{x_2} =  - 35 \)

\(\Rightarrow 7{x_2} =  - 35 \Leftrightarrow {x_2} =  - 5\)

Theo hệ thức Vi-ét ta có:

\(\eqalign{
& {x_1} + {x_2} = - m \cr 
& \Rightarrow - m = 7 + \left( { - 5} \right) \cr&\Leftrightarrow - m = 2\cr& \Leftrightarrow m = - 2 \cr} \)

Vậy \(m = -2\) thì phương trình \({x^2} + mx - 35 = 0\) có nghiệm \(x_1= 7\) và nghiệm \(x_2= -5\).

LG b

LG b

Phương trình \({x^2} - 13x + m = 0,\) biết nghiệm \(x_1 = 12,5\).

Phương pháp giải:

Áp dụng hệ thức Vi-ét:

- Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:

\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)

Lời giải chi tiết:

Phương trình \({x^2} - 13x + m = 0\) có nghiệm \(x_1 = 12,5\).

Theo hệ thức Vi-ét ta có: \({x_1} + {x_2} = 13 \)

\(\Rightarrow 12,5 + {x_2} = 13 \Leftrightarrow {x_2} = 0,5\)

Theo hệ thức Vi-ét ta có: \({x_1}{x_2} = m\) \( \Rightarrow m = 12,5.0,5 = 6,25\)

Vậy \( m = 6,25 \) thì phương trình \({x^2} - 13x + m = 0\) có nghiệm \(x_1= 12,5\) và nghiệm \(x_2= 0,5\).

LG c

LG c

Phương trình \(4{x^2} + 3x - {m^2} + 3m = 0,\) biết nghiệm \(x_1 = -2\).

Phương pháp giải:

Áp dụng hệ thức Vi-ét:

- Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:

\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)

Lời giải chi tiết:

Phương trình \(4{x^2} + 3x - {m^2} + 3m = 0\) có nghiệm \(x_1= -2\).

Theo hệ thức Vi-ét ta có: \(\displaystyle {x_1} + {x_2} =  - {3 \over 4}\)

\(\displaystyle\Rightarrow  - 2 + {x_2} =  - {3 \over 4} \)

\(\displaystyle \Leftrightarrow {x_2}= - {3 \over 4}+2= {5 \over 4}\)

Theo hệ thức Vi-ét ta có: \(\displaystyle{x_1}{x_2} = {{ - {m^2} + 3m} \over 4}\)

\( \displaystyle \Rightarrow -2.{5 \over 4} = {{ - {m^2} + 3m} \over 4}\)

\(\displaystyle \Leftrightarrow {m^2} - 3m - 10 = 0 \)

\( \displaystyle \Delta _m= {\left( { - 3} \right)^2} - 4.1.\left( { - 10} \right)\)\(\, = 9 + 40 = 49 > 0 \) 

\( \Rightarrow \sqrt \Delta_m = \sqrt {49} = 7 \)

\( \displaystyle {m_1} = {{3 + 7} \over {2.1}} = 5 \)

\( \displaystyle {m_2} = {{3 - 7} \over {2.1}} = - 2  \)

Vậy \(m = 5\) hoặc \(m = -2\) thì phương trình \(4{x^2} + 3x - {m^2} + 3m = 0\) có nghiệm \(x_1= -2\) và nghiệm \(\displaystyle {x_2} = {5 \over 4}\).

LG d

LG d

Phương trình \(3{x^2} - 2\left( {m - 3} \right)x + 5 = 0,\) biết nghiệm \(\displaystyle {x_1} = {1 \over 3}\).

Phương pháp giải:

Áp dụng hệ thức Vi-ét:

- Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:

\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)

Lời giải chi tiết:

Phương trình \(3{x^2} - 2\left( {m - 3} \right)x + 5 = 0\) có nghiệm \(\displaystyle{x_1} = {1 \over 3}\) .

Theo hệ thức Vi-ét ta có: \(\displaystyle {x_1}{x_2} = {5 \over 3} \)

\(\displaystyle \Rightarrow {1 \over 3}{x_2} = {5 \over 3} \Leftrightarrow {x_2} = 5\)

Theo hệ thức Vi-ét ta có: \(\displaystyle {x_1} + {x_2} = {{2\left( {m - 3} \right)} \over 3}\)

\(\displaystyle \Rightarrow {1 \over 3} + 5 = {{2\left( {m - 3} \right)} \over 3}\)

\(\displaystyle \Leftrightarrow 2\left( {m - 3} \right) = 16 \)

\(\displaystyle \Leftrightarrow m - 3 = 8 \Leftrightarrow m = 11\)

Vậy \(m = 11\) thì phương trình \(3{x^2} - 2\left( {m - 3} \right)x + 5 = 0\) có nghiệm \(\displaystyle{x_1} = {1 \over 3}\) và nghiệm \({x_2} = 5\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved