Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Rút gọn các biểu thức:
LG câu a
LG câu a
\(\sqrt {\dfrac{{x - 2\sqrt x + 1}}{{x + 2\sqrt x + 1}}} \) (\(x ≥ 0\));
Phương pháp giải:
Áp dụng:
Với \(A \ge 0\) thì \(A = \sqrt {{A^2}} \)
Và \(\sqrt {{A^2}} = \left| A \right|\)
Với \(A \ge 0\) thì \(\left| A \right| = A\)
với \(A < 0\) thì \(\left| A \right| = - A\).
Hằng đẳng thức cần sử dụng:
\({(A - B)^2} = {A^2} - 2AB + {B^2}\)
\({(A + B)^2} = {A^2} + 2AB + {B^2}\)
Lời giải chi tiết:
Vì \(x ≥ 0\) nên \( x = {\left( {\sqrt x } \right)^2}\)
Ta có:
\( \displaystyle\eqalign{
& \sqrt {{{x - 2\sqrt x + 1} \over {x + 2\sqrt x + 1}}} \cr
& = \sqrt {{{{{\left( {\sqrt x } \right)}^2} - 2\sqrt x + 1} \over {{{\left( {\sqrt x } \right)}^2} + 2\sqrt x + 1}}} \cr
& = \sqrt {{{{{\left( {\sqrt x - 1} \right)}^2}} \over {{{\left( {\sqrt x + 1} \right)}^2}}}} \cr} \)
\( \displaystyle \displaystyle= {{\sqrt {{{\left( {\sqrt x - 1} \right)}^2}} } \over {\sqrt {{{\left( {\sqrt x + 1} \right)}^2}} }}\)
\( = \dfrac{{\left| {\sqrt x - 1} \right|}}{{\left| {\sqrt x + 1} \right|}} = \dfrac{{\left| {\sqrt x - 1} \right|}}{{\sqrt x + 1}}\)
+) Nếu \( \displaystyle\sqrt x - 1 \ge 0 \Leftrightarrow x \ge 1\) thì \( \displaystyle\left| {\sqrt x - 1} \right| = \sqrt x - 1\)
Ta có: \( \displaystyle{{\left| {\sqrt x - 1} \right|} \over {\sqrt x + 1}} = {{\sqrt x - 1} \over {\sqrt x + 1}}\) (với \(x ≥ 1)\)
+) Nếu \( \displaystyle\sqrt x - 1 < 0 \Leftrightarrow x < 1\) thì \( \displaystyle\left| {\sqrt x - 1} \right| = 1 - \sqrt x \)
Ta có:
\( \displaystyle{{\left| {\sqrt x - 1} \right|} \over {\sqrt x + 1}} = {{1 - \sqrt x } \over {\sqrt x + 1}}\) (với \(0 ≤ x < 1\))
LG câu b
LG câu b
\(\dfrac{{x - 1}}{{\sqrt y - 1}}\sqrt {\dfrac{{y - 2\sqrt y + 1}}{{{{(x - 1)}^4}}}} \) \((x ≠1, y ≠ 1\) và \(y ≥ 0).\)
Phương pháp giải:
Áp dụng:
Với \(A \ge 0\) thì \(A = \sqrt {{A^2}} \)
Và \(\sqrt {{A^2}} = \left| A \right|\)
Với \(A \ge 0\) thì \(\left| A \right| = A\)
với \(A < 0\) thì \(\left| A \right| = - A\).
Hằng đẳng thức cần sử dụng:
\({(A - B)^2} = {A^2} - 2AB + {B^2}\)
Lời giải chi tiết:
Vì \(y ≥ 0\) nên \( y = {\left( {\sqrt y } \right)^2}\)
Ta có:
\( \displaystyle\eqalign{
& {{x - 1} \over {\sqrt y - 1}}\sqrt {{{{{ {y - 2\sqrt y + 1} }}} \over {{{(x - 1)}^4}}}} \cr
& = {{x - 1} \over {\sqrt y - 1}}{{\sqrt {{{\left( \sqrt y - 1 \right)}^2}} } \over {\sqrt {{{(x - 1)}^4}} }} \cr} \)
\( \displaystyle\eqalign{& = {{x - 1} \over {\sqrt y - 1}}.{{\left| \sqrt y-1 \right|} \over {{{(x - 1)}^2}}} \cr
& = { {\left| \sqrt y-1 \right|} \over {({\sqrt {y} - 1}).(x - 1)}} \cr} \)
+) Nếu \(y>1\)
Ta có \( \displaystyle\left| \sqrt y-1 \right|=\sqrt y-1\) nên:
\( \displaystyle { {\left| \sqrt y-1 \right|} \over {({\sqrt {y} - 1}).(x - 1)}} = { { \sqrt y-1 } \over {({\sqrt {y} - 1}).(x - 1)}} \)\( =\dfrac {1}{x-1}\)
+) Nếu \(0 \le y < 1\)
Ta có \(\left| {\sqrt y - 1} \right| = -( \sqrt y -1)\) nên:
\(\displaystyle { {\left| \sqrt y-1 \right|} \over {({\sqrt {y} - 1}).(x - 1)}} = { { -(\sqrt y-1) } \over {({\sqrt {y} - 1}).(x - 1)}}\)\(= \dfrac{{ - 1}}{{x - 1}}\)
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Tiếng Anh lớp 9
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Giáo dục công dân lớp 9
Chương 1. Các loại hợp chất vô cơ
Bài 5. Thực hành: Phân tích và so sánh tháp dân số năm 1989 và năm 1999
Đề thi vào 10 môn Toán Bắc Ninh