Trả lời câu hỏi 41 - Mục câu hỏi trắc nghiệm trang 113

1. Nội dung câu hỏi

Cho hình lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(M\) là trung điểm của \(A'C'\).

a)    Chứng minh rằng \(A'B\parallel \left( {B'CM} \right)\).

b)    Xác định giao tuyến \(d\) của hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A'BC'} \right)\).


2. Phương pháp giải

a) Gọi \(N\) là trung điểm cạnh \(BC'\). Chứng minh rằng \(MN\parallel A'B\), rồi suy ra điều phải chứng minh.

b) Chỉ ra rằng hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A'BC'} \right)\) chứa hai đường thẳng song song và chung điểm \(B\), từ đó xác định được giao tuyến của hai mặt phẳng này.

 

3. Lời giải chi tiết

a) Gọi \(N\) là trung điểm cạnh \(BC'\). Do \(M\) là trung điểm cạnh \(A'C'\) nên \(MN\) là đường trung bình của tam giác \(A'BC'\). Suy ra \(A'B\parallel MN\).

Do \(MN \subset \left( {B'MC} \right)\), nên \(A'B\parallel \left( {B'MC} \right)\). Bài toán được chứng minh.

b) Ta có \(AC\parallel A'C'\), \(A'C' \subset \left( {A'BC'} \right)\), \(AC \subset \left( {ABC} \right)\) nên giao tuyến của hai mặt phẳng này (nếu có) là một đường thẳng song song hoặc trùng với \(AC\).

Mặt khác, do \(B \in \left( {ABC} \right) \cap \left( {A'BC'} \right)\), nên ta kết luận rằng \(\left( {ABC} \right)\) và \(\left( {A'BC'} \right)\) có giao tuyến là đường thẳng \(d\) đi qua \(B\) và song song với \(AC\) (trên hình vẽ).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved