1. Nội dung câu hỏi
Cho hình lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(M\) là trung điểm của \(A'C'\).
a) Chứng minh rằng \(A'B\parallel \left( {B'CM} \right)\).
b) Xác định giao tuyến \(d\) của hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A'BC'} \right)\).
2. Phương pháp giải
a) Gọi \(N\) là trung điểm cạnh \(BC'\). Chứng minh rằng \(MN\parallel A'B\), rồi suy ra điều phải chứng minh.
b) Chỉ ra rằng hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A'BC'} \right)\) chứa hai đường thẳng song song và chung điểm \(B\), từ đó xác định được giao tuyến của hai mặt phẳng này.
3. Lời giải chi tiết
a) Gọi \(N\) là trung điểm cạnh \(BC'\). Do \(M\) là trung điểm cạnh \(A'C'\) nên \(MN\) là đường trung bình của tam giác \(A'BC'\). Suy ra \(A'B\parallel MN\).
Do \(MN \subset \left( {B'MC} \right)\), nên \(A'B\parallel \left( {B'MC} \right)\). Bài toán được chứng minh.
b) Ta có \(AC\parallel A'C'\), \(A'C' \subset \left( {A'BC'} \right)\), \(AC \subset \left( {ABC} \right)\) nên giao tuyến của hai mặt phẳng này (nếu có) là một đường thẳng song song hoặc trùng với \(AC\).
Mặt khác, do \(B \in \left( {ABC} \right) \cap \left( {A'BC'} \right)\), nên ta kết luận rằng \(\left( {ABC} \right)\) và \(\left( {A'BC'} \right)\) có giao tuyến là đường thẳng \(d\) đi qua \(B\) và song song với \(AC\) (trên hình vẽ).
Bài 15: Dẫn xuất halogen
SBT Toán 11 - Cánh Diều tập 2
Chủ đề 1: Vai trò, tác dụng của môn đá cầu; kĩ thuật tâng cầu và đỡ cầu
Chuyên đề 3. Mở đầu về điện tử học
Chủ đề 7. Ô tô
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11