Bài 1. Thu thập và phân loại dữ liệu
Bài 2. Mô tả và biểu diễn dữ liệu trên các bảng, biểu đồ
Bài 3. Phân tích và xử lí dữ liệu thu được ở dạng bảng, biểu đồ
Bài 4. Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản
Bài 5. Xác suất thực nghiệm của một biến cố trong một số trò chơi đơn giản
Bài tập cuối chương VI
Bài 1. Định lí Thalès trong tam giác
Bài 2. Ứng dụng của định lí Thalès trong tam giác
Bài 3. Đường trung bình của tam giác
Bài 4. Tính chất đường phân giác của tam giác
Bài 5. Tam giác đồng dạng
Bài 6. Trường hợp đồng dạng thứ nhất của tam giác
Bài 7. Trường hợp đồng dạng thứ hai của tam giác
Bài 8. Trường hợp đồng dạng thứ ba của tam giác
Bài 9. Hình đồng dạng
Bài tập cuối chương VIII
1. Nội dung câu hỏi
Hình thang \(ABCD\) ở Hình 39 có \(AB//CD,AB < CD,\widehat {ABD} = 90^\circ \). Hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(G\). Điểm \(E\) nằm trên đường vuông góc với \(AC\) tại \(C\) thỏa mãn \(CE = AG\) và đoạn thẳng \(GE\) không cắt đường thẳng \(CD\). Điểm \(F\) nằm trên đoạn thẳng \(DC\) và \(DF = GB\). Chứng minh:
a) \(\Delta FGD\backsim \Delta ECG\);
b) \(\Delta GDC\backsim \Delta GFE\);
c) \(\widehat {GFE} = 90^\circ \).
2. Phương pháp giải
Áp dụng trường hợp đồng dạng thứ hai của tam giác: cạnh – góc – cạnh
Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau thì hai tam giác đó đồng dạng.
3. Lời giải chi tiết
a) Do \(AB//CD\) nên \(\frac{{BG}}{{AG}} = \frac{{GD}}{{GC}}\).
Mặt khác \(AG = CE,BG = DF\) nên \(\frac{{DF}}{{CE}} = \frac{{GD}}{{GC}}\).
Mà \(\widehat {GDF} = \widehat {GCE}\) nên \(\Delta FDG\backsim \Delta ECG\).
b) Vì \(\Delta FDG\backsim \Delta ECG\) nên \(\widehat {DGF} = \widehat {CGE}\) và \(\frac{{DG}}{{GF}} = \frac{{GC}}{{GE}}\).
\(\widehat {DGF} = \widehat {CGE} = > \widehat {DGF} + \widehat {FGC} = + \widehat {FGC}\).
Hay \(\widehat {DGC} = \widehat {FGE}\).
Từ đó, ta có \(\Delta GDC\backsim \Delta GFE\) vì \(\frac{DG}{GF}=\frac{GC}{GE}\) và \(\widehat{DGC}=\widehat{FGE}\).
c) Vì \(\Delta GDC\backsim \Delta GFE\) nên \(\widehat {GFE} = \widehat {GDC} = 90^\circ \).
Bài 11. Dân cư và đặc điểm kinh tế khu vực Nam Á
Chủ đề 7. Em với thiên nhiên và môi trường
Tác giả - Tác phẩm Ngữ văn 8 kì 1
SOẠN VĂN 8 TẬP 1
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Địa lí lớp 8
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8