Giải bài 41 trang 82 SBT toán 10 - Cánh diều

Đề bài

Tìm số đo góc giữa hai đường thẳng của mỗi cặp đường thẳng sau:

a) ∆1: 3x + y - 5 = 0 và ∆2: x + 2y − 3 = 0

b) \({\Delta _3}:\left\{ \begin{array}{l}x = 2 + \sqrt 3 t\\y =  - 1 + 3t\end{array} \right.\) và \({\Delta _4}:\left\{ \begin{array}{l}x = 3 - \sqrt 3 t'\\y =  - t'\end{array} \right.\)

c) \({\Delta _5}: - \sqrt 3 x + 3y + 2 = 0\) và \({\Delta _6}:\left\{ \begin{array}{l}x = 3t\\y = 1 - \sqrt 3 t\end{array} \right.\)

Phương pháp giải - Xem chi tiết

Bước 1: Đưa các PT của mỗi ý về cùng dạng PT đường thẳng

Bước 2: Tính góc giữa hai vectơ pháp tuyến (chỉ phương) của 2 đường thẳng rồi suy ra góc giữa hai đường thẳng tương ứng

Lời giải chi tiết

a) ∆1: 3x + y - 5 = 0 và ∆2: x + 2y − 3 = 0

1 có VTPT là \(\overrightarrow {{n_1}}  = (3;1)\); ∆2 có VTPT là \(\overrightarrow {{n_2}}  = (1;2)\)

Ta có: \(\cos \left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right) = \frac{{3.1 + 1.2}}{{\sqrt {{3^2} + {1^2}} .\sqrt {{1^2} + {2^2}} }}\)\( = \frac{{\sqrt 2 }}{2}\)\( \Rightarrow \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right) = {45^0}\)

Vậy \(\left( {{\Delta _1},{\Delta _2}} \right) = {45^0}\)

b) \({\Delta _3}:\left\{ \begin{array}{l}x = 2 + \sqrt 3 t\\y =  - 1 + 3t\end{array} \right.\) và \({\Delta _4}:\left\{ \begin{array}{l}x = 3 - \sqrt 3 t'\\y =  - t'\end{array} \right.\)

3 có VTCP là \(\overrightarrow {{u_1}}  = (\sqrt 3 ;3)\); ∆4 có VTPT là \(\overrightarrow {{u_2}}  = ( - \sqrt 3 ; - 1)\)

Ta có: \(\cos \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right) = \frac{{\sqrt 3 .\left( { - \sqrt 3 } \right) + 3.( - 1)}}{{\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {3^2}} .\sqrt {{{\left( { - \sqrt 3 } \right)}^2} + {{( - 1)}^2}} }}\)\( =  - \frac{{\sqrt 3 }}{2}\)\( \Rightarrow \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right) = {150^0}\)

Vậy \(\left( {{\Delta _3},{\Delta _4}} \right) = {180^0} - {150^0} = {30^0}\)

c) \({\Delta _5}: - \sqrt 3 x + 3y + 2 = 0\) và \({\Delta _6}:\left\{ \begin{array}{l}x = 3t\\y = 1 - \sqrt 3 t\end{array} \right.\)

5 có VTPT là \(\overrightarrow n  = ( - \sqrt 3 ;3)\) \( \Rightarrow {\Delta _5}\) có một VTCP là \(\overrightarrow {{u_3}}  = (3;\sqrt 3 )\)

6 có VTCP là \(\overrightarrow {{u_4}}  = (3; - \sqrt 3 )\)

Ta có: \(\cos \left( {\overrightarrow {{u_3}} ,\overrightarrow {{u_4}} } \right) = \frac{{3.3 + \sqrt 3 .\left( { - \sqrt 3 } \right)}}{{\sqrt {{3^2} + {{\left( {\sqrt 3 } \right)}^2}} .\sqrt {{3^2} + {{\left( { - \sqrt 3 } \right)}^2}} }}\)\( = \frac{1}{2}\)\( \Rightarrow \left( {\overrightarrow {{u_3}} ,\overrightarrow {{u_4}} } \right) = {60^0}\)

Vậy \(\left( {{\Delta _5},{\Delta _6}} \right) = {60^0}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved