1. Nội dung câu hỏi
Cho \(\Delta ABC\) có AD, BE, CF lần lượt là đường phân giác của góc A, góc B, góc C \(\left( {D \in BC,E \in AC,F \in AB} \right)\). Chứng minh rằng \(\frac{{AE}}{{EC}}.\frac{{CD}}{{DB}}.\frac{{BF}}{{FA}} = 1\).
2. Phương pháp giải
Sử dụng kiến thức về tính chất đường phân giác của tam giác để chứng minh: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề với hai đoạn thẳng ấy.
3. Lời giải chi tiết
Vì AD là tia phân giác của góc BAC trong tam giác ABC nên \(\frac{{CD}}{{DB}} = \frac{{AC}}{{AB}}\) (tính chất đường phân giác của tam giác)
Vì BE là tia phân giác của góc ABC trong tam giác ABC nên \(\frac{{AE}}{{EC}} = \frac{{AB}}{{BC}}\) (tính chất đường phân giác của tam giác)
Vì CF là tia phân giác của góc BCA trong tam giác ABC nên \(\frac{{BF}}{{FA}} = \frac{{BC}}{{AC}}\) (tính chất đường phân giác của tam giác)
Do đó, \(\frac{{AE}}{{EC}}.\frac{{CD}}{{DB}}.\frac{{BF}}{{FA}} = \frac{{AB}}{{BC}}.\frac{{AC}}{{AB}}.\frac{{BC}}{{AC}} = 1\)
CHƯƠNG 3. TUẦN HOÀN
SBT Ngữ văn 8 - Cánh Diều tập 2
Bài 11: Lao động tự giác và sáng tạo
Unit 11: Travelling Around Viet Nam - Du lịch vòng quanh Việt Nam
Tải 30 đề thi học kì 2 - Hóa học 8
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8