1. Nội dung câu hỏi
Cho tam giác ABC, phân giác AD \(\left( {D \in BC} \right)\). Kẻ DE//AB\(\left( {E \in AC} \right)\). Chứng minh rằng \(AB.EC = AC.EA\)
2. Phương pháp giải
+ Sử dụng kiến thức về tính chất đường phân giác của tam giác để chứng minh: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề với hai đoạn thẳng ấy.
+ Sử dụng kiến thức về định lí Thalès để chứng minh: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.
3. Lời giải chi tiết
Vì AD là tia phân giác của góc BAC trong tam giác ABC nên \(\frac{{CD}}{{DB}} = \frac{{AC}}{{AB}}\) (1) (tính chất đường phân giác của tam giác)
Tam giác ABC có: ED//AB nên theo định lí Thalès ta có: \(\frac{{EC}}{{AE}} = \frac{{DC}}{{DB}}\) (2)
Từ (1) và (2) ta có: \(\frac{{AC}}{{AB}} = \frac{{EC}}{{AE}}\), do đó \(AB.EC = AC.EA\)
Tải 20 đề ôn tập học kì 2 Văn 8
Bài 1: Tôn trọng lẽ phải
Bài 26. Đặc điểm tài nguyên khoáng sản Việt Nam
Đề kiểm tra giữa học kì 1
Đề thi, đề kiểm tra Toán lớp 8
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8