SBT TOÁN TẬP 1 - KẾT NỐI TRI THỨC VỚI CUỘC SỐNG

Giải bài 4.19 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Đề bài

Cho tam giác \(ABC.\)

a)      Tìm điểm \(M\) sao cho \(\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC}  = \overrightarrow 0 \)

b)     Xác định điểm \(N\) thỏa mãn \(4\overrightarrow {NA}  - 2\overrightarrow {NB}  + \overrightarrow {NC}  = \overrightarrow 0 \)

Lời giải chi tiết

a)      Giả sử tìm được điểm \(M\) sao cho \(\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC}  = \overrightarrow 0 \)

Gọi \(I\) là trung điểm của \(AB\) và \(J\) là trung điểm của cạnh \(CI\).

Ta có: \(\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC}  = \;\overrightarrow {MI}  + \overrightarrow {IA}  + \overrightarrow {MI}  + \overrightarrow {IB}  + 2\overrightarrow {MC}  = 2\overrightarrow {MI}  + 2\overrightarrow {MC}  = 4\overrightarrow {MJ} \)

Mặt khác \(\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC}  = \overrightarrow 0 \)

\( \Rightarrow \) \(4\overrightarrow {MJ}  = \overrightarrow 0 \,\, \Rightarrow \,\,\overrightarrow {MJ}  = \overrightarrow 0 \,\, \Rightarrow \,\,M \equiv J\)

Vậy \(M\) là trung điểm của \(CI\).

b)     Giả sử tìm được điểm \(N\) thỏa mãn \(4\overrightarrow {NA}  - 2\overrightarrow {NB}  + \overrightarrow {NC}  = \overrightarrow 0 \)

Gọi \(K\) là trung điểm của \(AC\).

Ta có: \(4\overrightarrow {NA}  - 2\overrightarrow {NB}  + \overrightarrow {NC}  = 2\left( {\overrightarrow {NA}  - \overrightarrow {NB} } \right) + \left( {\overrightarrow {NA}  + \overrightarrow {NC} } \right) + \overrightarrow {NA} \)

                                                     \(\begin{array}{l} = 2\overrightarrow {BA}  + \left( {\overrightarrow {NK}  + \overrightarrow {KB}  + \overrightarrow {NK}  + \overrightarrow {KC} } \right) + \overrightarrow {NA} \\ = 2\overrightarrow {BA}  + 2\overrightarrow {NK}  + \overrightarrow {NA} \end{array}\)

Gọi \(M\) là điểm thỏa mãn \(2\overrightarrow {MK}  + \overrightarrow {MA}  = 0\)

Khi đó: \(2\overrightarrow {NK}  + \overrightarrow {NA}  = 2\left( {\overrightarrow {NM}  + \overrightarrow {MK} } \right) + \overrightarrow {NM}  + \overrightarrow {MA}  = 3\overrightarrow {NM} \)

Do đó \(4\overrightarrow {NA}  - 2\overrightarrow {NB}  + \overrightarrow {NC}  = 2\overrightarrow {BA}  + 3\overrightarrow {NM} \)

Mặt khác \(4\overrightarrow {NA}  - 2\overrightarrow {NB}  + \overrightarrow {NC}  = \overrightarrow 0 \)

\( \Rightarrow \) \(2\overrightarrow {BA}  + 3\overrightarrow {NM}  = \overrightarrow 0 \) \( \Leftrightarrow \) \(\overrightarrow {NM}  = \frac{2}{3}\overrightarrow {AB} \)    (1)

Lấy điểm \(P\) thuộc cạnh \(AB\) sao cho \(\overrightarrow {AP}  = \frac{2}{3}\overrightarrow {AB} \)    (2)

Từ (1) và (2) \( \Rightarrow \) \(\overrightarrow {NM}  = \overrightarrow {AP} \)

\( \Rightarrow \) tứ giác \(APMN\) là hình bình hành

Vậy điểm \(N\) cần tìm là đỉnh thứ tư của hình bình hành \(APMN\).

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved