Toán 7 tập 1 - Kết nối tri thức với cuộc sống
Toán 7 tập 1 - Kết nối tri thức với cuộc sống

Giải bài 4.19 trang 74 SGK Toán 7 tập 1 - Kết nối tri thức

Đề bài

Cho tia Oz là tia phân giác của góc xOy. Lấy các điểm A,B,C lần lượt thuộc các tia Ox, Oy, Oz sao cho \(\widehat {CAO} = \widehat {CBO}.\)

a) Chứng minh rằng \(\Delta OAC = \Delta OBC\).

b) Lấy điểm \(M\) trên tia đối của tia CO. Chứng minh rằng \(\Delta MAC = \Delta MBC\).

 

 

Phương pháp giải - Xem chi tiết

a)      Chứng minh hai tam giác bằng nhau theo trường hợp góc – cạnh – góc.

b)      Chứng minh hai tam giác bằng nhau theo trường hợp cạnh – góc - cạnh.

 

 

Lời giải chi tiết

a) Trong \(\Delta OAC\) có: \(\widehat {AOC}+\widehat {OAC}+\widehat {OCA}=180^0\)

Trong \(\Delta OBC\) có: \(\widehat {BOC}+\widehat {OBC}+\widehat {OCB}=180^0\)

Mà \(\widehat {AOC} = \widehat {BOC}\)(do Oz là phân giác góc xOy) và \(\widehat {CAO}=\widehat {CBO}\) 

Do đó, \(\widehat {OCA}=\widehat {OCB}\).

Xét \(\Delta OAC\) và \(\Delta OBC\) có:

\(\widehat {AOC} = \widehat {BOC}\) (cmt)

OC chung

\(\widehat {OCA} = \widehat {OCB}(cmt)\)

\(\Rightarrow \Delta OAC = \Delta OBC\)(g.c.g)

b) Do \(\Delta OAC = \Delta OBC\) nên AC=BC ( 2 cạnh tương ứng)

Vì \(\widehat {ACO}\) và \(\widehat {ACM}\) kề bù

    \(\widehat {BCO}\) và \(\widehat {BCM}\) kề bù

Mà \(\widehat {ACO} = \widehat {BCO}\) nên \(\widehat {ACM} = \widehat {BCM}\)

Xét \(\Delta MAC\) và \(\Delta MBC\) có:

AC=BC (cmt)

\(\widehat {ACM} = \widehat {BCM}\) (cmt)

CM chung

\( \Rightarrow \Delta MAC = \Delta MBC\)(c.g.c)

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved