1. Nội dung câu hỏi
Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \(M\), \(N\), \(P\), \(Q\), \(R\), \(S\) lần lượt là trung điểm của \(AB\), \(BC\), \(CC'\), \(C'D'\), \(D'A'\), \(AA'\). Chứng minh rằng:
a) Sáu điểm \(M\), \(N\), \(P\), \(Q\), \(R\), \(S\) cùng thuộc một mặt phẳng.
b) Các đoạn thẳng \(MQ\), \(NR\), \(PS\) cắt nhau tại trung điểm của mỗi đoạn.
2. Phương pháp giải
a) Chỉ ra rằng \(RS\parallel NP\), \(PQ\parallel MS\) và \(QR\parallel MN\) để chỉ ra 6 điểm đồng phẳng.
b) Chứng minh rằng \(MNQR\), \(RSNP\) là các hình bình hành để suy ra điều phải chứng minh.
3. Lời giải chi tiết
a) Do \(R\) là trung điểm \(A'D'\), \(S\) là trung điểm \(AA'\) nên \(RS\) là đường trung bình của tam giác \(A'AD'\). Suy ra \(RS\parallel AD'\). Tương tự ta cũng có \(NP\parallel BC'\).
Tứ giác \(ABC'D'\) có \(AB = C'D'\) và \(AB\parallel C'D'\) nên là hình bình hành. Suy ra \(AD'\parallel BC'\) và \(AD' = BC'\). Từ đó suy ra \(RS\parallel NP\), và 4 điểm \(R\), \(S\), \(N\), \(P\) đồng phẳng.
Chứng minh tương tự ta có \(PQ\parallel MS\) và \(QR\parallel MN\).
Như vậy, 6 điểm \(M\), \(N\), \(P\), \(Q\), \(R\), \(S\) đồng phẳng. Bài toán được chứng minh.
b) Ta có \(RS\parallel NP\).
Vì \(RS\) là đường trung bình của tam giác \(A'AD'\) nên \(RS = \frac{1}{2}AD'\). Tương tự ta cũng có \(NP = \frac{1}{2}BC'\). Do \(AD' = BC'\) nên \(RS = NP\). Vậy tứ giác \(RSNP\) là hình bình hành. Suy ra \(NR\) và \(PS\) cắt nhau tại trung điểm \(O\) của mỗi đường.
Chứng minh tương tự ta cũng có \(MNQR\) là hình bình hành, từ đó ta có \(NR\) và \(MQ\) cắt nhau tại trung điểm của mỗi đường. Do \(O\) là trung điểm của \(NR\), nên \(O\) cũng là trung điểm của \(MQ\).
Vậy ba đoạn thẳng \(MQ\), \(NR\) và \(PS\) cắt nhau trung điểm \(O\) của mỗi đường.
Bài toán được chứng minh.
Chuyên đề 2: Chiến tranh và hòa bình trong thế kỉ XX
Chương II. Vật liệu cơ khí
Chủ đề 5. Giới thiệu chung về cơ khí động lực
Giáo dục kinh tế
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Tiếng Anh lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11