Tìm giới hạn của các hàm số sau
LG a
\(f\left( x \right) = {{{x^2} - 2x - 3} \over {x - 1}}\) khi \(x \to 3\)
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to 3} \dfrac{{{x^2} - 2x - 3}}{{x - 1}}\) \( = \dfrac{{{3^2} - 2.3 - 3}}{{3 - 1}} = 0\)
LG b
\(h\left( x \right) = {{2{x^3} + 15} \over {{{\left( {x + 2} \right)}^2}}}\) khi \(x \to - 2\)
Lời giải chi tiết:
Ta có:
\(\mathop {\lim }\limits_{x \to - 2} \left( {2{x^3} + 15} \right)\) \( = 2.{\left( { - 2} \right)^3} + 15 = - 1 < 0\) và \(\mathop {\lim }\limits_{x \to - 2} {\left( {x + 2} \right)^2} = 0\), \({\left( {x + 2} \right)^2} > 0,\forall x \ne - 2\)
Vậy \(\mathop {\lim }\limits_{x \to - 2} \dfrac{{2{x^3} + 15}}{{{{\left( {x + 2} \right)}^2}}} = - \infty \)
LG c
\(k\left( x \right) = \sqrt {4{x^2} - x + 1} \) khi \(x \to - \infty \)
Lời giải chi tiết:
\(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } \sqrt {4{x^2} - x + 1} \cr
& = \mathop {\lim }\limits_{x \to - \infty } \left| x \right|\sqrt {4 - {1 \over x} + {1 \over {{x^2}}}} \cr
& = \mathop {\lim }\limits_{x \to - \infty } \left( { - x\sqrt {4 - {1 \over x} + {1 \over {{x^2}}}} } \right) \cr &= + \infty \cr} \)
LG d
\(h\left( x \right) = {{x - 15} \over {x + 2}}\) khi \(x \to - {2^ + }\) và khi \(x \to - {2^ - }\)
Lời giải chi tiết:
Ta có: \(\mathop {\lim }\limits_{x \to - {2^ + }} \left( {x - 15} \right) = - 2 - 15 = - 17 < 0\) và \(\mathop {\lim }\limits_{x \to - {2^ + }} \left( {x + 2} \right) = 0\), \(x + 2 > 0,\forall x > - 2\)
Vậy \(\mathop {\lim }\limits_{x \to - {2^ + }} \dfrac{{x - 15}}{{x + 2}} = - \infty \)
Ta có: \(\mathop {\lim }\limits_{x \to - {2^ - }} \left( {x - 15} \right) = - 2 - 15 = - 17 < 0\) và \(\mathop {\lim }\limits_{x \to - {2^ - }} \left( {x + 2} \right) = 0\), \(x + 2 < 0,\forall x < - 2\)
Vậy \(\mathop {\lim }\limits_{x \to - {2^ - }} \dfrac{{x - 15}}{{x + 2}} = + \infty \)
HÌNH HỌC - TOÁN 11
SGK Toán 11 - Kết nối tri thức với cuộc sống tập 2
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
Chương 5. Mối quan hệ giữa các quá trình sinh lí trong cơ thể sinh vật và một số ngành nghề liên quan đến sinh học cơ thể
Unit 5: Cities and Education in the future
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11