SBT Toán 11 - Kết nối tri thức với cuộc sống tập 1

Câu hỏi 4.25 - Mục Bài tập trang 63

1. Nội dung câu hỏi

Cho hình chóp tứ giác S.ABCD và E là một điểm bất kì thuộc cạnh SA. Gọi (P) là mặt phẳng qua E và song song với hai đường thẳng SB, SD. Gọi M, N lần lượt là giao điểm của (P) và các cạnh AB, AD.

a) Chứng minh rằng EM//SB và EN//SD.

b) Giả sử đường thẳng MN cắt các đường thẳng BC, CD. Xác định giao tuyến của mặt phẳng (P) và các mặt phẳng (SBC), (SCD).


2. Phương pháp giải

Cho đường thẳng a song song với mặt phẳng (P). Nếu mặt phẳng (Q) chứa a và cắt (P) theo giao tuyến b thì a song song với b.

 

3. Lời giải chi tiết 

a) Mặt phẳng (SAB) chứa đường thẳng SB song song với mặt phẳng (P) nên giao tuyến của hai mặt phẳng đó song song với SB, suy ra EM//SB.

Mặt phẳng (SAD) có đường thẳng SD song song với mặt phẳng (P) nên giao tuyến của hai mặt phẳng đó song song với SD, suy ra EN//SD

b) Gọi F, G lần lượt là giao điểm của đường thẳng MN và hai đường thẳng BC, CD. Trong mặt phẳng (SBC), vẽ đường thẳng qua F song song với SB thì đường thẳng đó là giao tuyến của mặt phẳng (P) và mặt phẳng (SBC).

Trong mặt phẳng (SCD), vẽ đường thẳng qua G và song song với SD thì đường thẳng đó là giao tuyến của mặt phẳng (P) và mặt phẳng (SCD).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved