Đề bài
Biết \({z_1}\) và \({z_2}\) là hai nghiệm của phương trình \(2{x^2} + \sqrt 3 x + 3 = 0\). Hãy tính:
a) \(z_1^2 + z_2^2\) b) \(z_1^3 + z_2^3\)
c) \(z_1^4 + z_2^4\) d) \(\dfrac{{{z_1}}}{{{z_2}}} + \dfrac{{{z_2}}}{{{z_1}}}\)
Phương pháp giải - Xem chi tiết
Sử dụng hệ thức Vi – et:
Phương trình \(a{z^2} + bz + c = 0(a\ne 0)\) luôn có hai nghiệm thỏa mãn \({z_1} + {z_2} = - \dfrac{b}{a},{z_1}{z_2} = \dfrac{c}{a}\) trong tập số phức \(\mathbb{C}\).
Lời giải chi tiết
Ta có: \({z_1} + {z_2} = - \dfrac{{\sqrt 3 }}{2},{z_1}.{z_2} = \dfrac{3}{2}\). Từ đó suy ra:
a) \(z_1^2 + z_2^2 = {\left( {{z_1} + {z_2}} \right)^2} - 2{z_1}{z_2}\)\( = \dfrac{3}{4} - 3 = - \dfrac{9}{4}\)
b) \(z_1^3 + z_2^3\)\( = \left( {{z_1} + {z_2}} \right)\left( {z_1^2 - {z_1}{z_2} + z_2^2} \right)\) \( = - \dfrac{{\sqrt 3 }}{2}\left( { - \dfrac{9}{4} - \dfrac{3}{2}} \right) = \dfrac{{15\sqrt 3 }}{8}\)
c) \(z_1^4 + z_2^4 = {\left( {z_1^2 + z_2^2} \right)^2} - 2z_1^2.z_2^2\)\( = {\left( { - \dfrac{9}{4}} \right)^2} - 2.{\left( {\dfrac{3}{2}} \right)^2} = \dfrac{9}{{16}}\)
d) \(\dfrac{{{z_1}}}{{{z_2}}} + \dfrac{{{z_2}}}{{{z_1}}} = \dfrac{{z_1^2 + z_2^2}}{{{z_1}.{z_2}}}\)\( = \dfrac{{ - \dfrac{9}{4}}}{{\dfrac{3}{2}}} = - \dfrac{3}{2}\)
Đề kiểm tra 45 phút (1 tiết ) – Chương 7 – Hóa học 12
Unit 4. The Mass Media
ĐỀ THI THỬ THPT QUỐC GIA MÔN LỊCH SỬ
CHƯƠNG III. HỆ CƠ SỞ DỮ LIỆU QUAN HỆ
Tải 10 đề kiểm tra 15 phút - Chương 3 – Hóa học 12