Giải bài 4.29 trang 61 sách bài tập toán 7 - Kết nối tri thức với cuộc sống

Đề bài

Gọi M, N lần lượt là trung điểm các đoạn thẳng cạnh BC và EF của hai tam giác ABC và DEF. Giả sử rằng AB = DE, BC = EF, AM = DN (H.4.29). Chứng minh rằng \(\Delta ABC = \Delta DEF\)

Phương pháp giải - Xem chi tiết

-Chứng minh tam giác ABM bằng tam giác DEN

-Chứng minh tam giác ABC bằng tam giác DEF

Lời giải chi tiết

 

Xét \(\Delta ABM\) và \(\Delta DEN\) có:

AB = DE (gt)

BM = EN (gt)

AM = DN (gt)

\( \Rightarrow \Delta ABM = \Delta DEN\left( {c - c - c} \right)\)

\( \Rightarrow \widehat B = \widehat E\) (góc tương ứng)

Xét \(\Delta ABC\) và \(\Delta DEF\)có:

AB = DE (gt)

\(\widehat B = \widehat E\)(cmt)

BC = EF (gt)

\( \Rightarrow \Delta ABC = \Delta DEF\left( {c - g - c} \right)\) 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved