Đề bài
Cho ba vectơ \(\overrightarrow a ,\,\,\overrightarrow b ,\,\,\overrightarrow c \) cùng phương và cùng khác vectơ \(\overrightarrow 0 \). Chứng minh rằng có ít nhất hai vectơ trong chúng có cùng hướng.
Phương pháp giải - Xem chi tiết
- Gọi \({\Delta _1},\,\,{\Delta _2},\,\,{\Delta _3}\) lần lượt là giá của vectơ \(\overrightarrow a ,\,\,\overrightarrow b ,\,\,\overrightarrow c \)
- Chứng minh \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương
Lời giải chi tiết
Giả sử \({\Delta _1},\,\,{\Delta _2},\,\,{\Delta _3}\) lần lượt là giá của vectơ \(\overrightarrow a ,\,\,\overrightarrow b ,\,\,\overrightarrow c \)
Ta có: \(\overrightarrow a \) cùng phương với \(\overrightarrow c \)
\( \Rightarrow \) \({\Delta _1}\)//\({\Delta _3}\) (hoặc \({\Delta _1} \equiv {\Delta _3}\)) (1)
\(\overrightarrow b \) cùng phương với \(\overrightarrow c \)
\( \Rightarrow \) \({\Delta _2}\)//\({\Delta _2}\) (hoặc \({\Delta _2} \equiv {\Delta _3}\)) (2)
Từ (1) và (2) \( \Rightarrow \) \({\Delta _1}\)//\({\Delta _2}\) (hoặc \({\Delta _1} \equiv {\Delta _2}\))
\( \Rightarrow \) hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương (đpcm).
Đề thi học kì 1
Bài 3. Ma túy, tác hại của ma túy
Unit 9: Travel and Tourism
Chuyên đề 2. Sân khấu hóa tác phẩm văn học
Tác giả tác phẩm - Kết nối tri thức
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10