SBT TOÁN TẬP 1 - KẾT NỐI TRI THỨC VỚI CUỘC SỐNG

Giải bài 4.37 trang 66 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Đề bài

Trong mặt phẳng tọa độ \(Oxy\) cho ba điểm \(A( - 3;2),\,\,B(1;5)\) và \(C(3; - 1).\)

a)  Chứng minh rằng \(A,\,\,B,\,\,C\) là ba đỉnh của một tam giác. Tìm tọa độ trọng tâm \(G\) của tam giác ấy.

b) Tìm tọa độ trực tâm \(H\) của tam giác \(ABC.\)

c) Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC.\) Tìm tọa độ của \(I.\)

Lời giải chi tiết

a)      Ta có: \(\overrightarrow {AB}  = (4;3)\) và \(\overrightarrow {AC}  = (6; - 3)\)

\( \Rightarrow \) \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) không cùng phương

\( \Rightarrow \) ba điểm \(A,\,\,B,\,\,C\) không thẳng hàng

\( \Rightarrow \) ba điểm \(A,\,\,B,\,\,C\) là ba đỉnh của một tam giác.

Gọi \(G\) là trọng tâm của \(\Delta ABC\)

\( \Rightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = \frac{{ - 3 + 1 + 3}}{3} = \frac{1}{3}}\\{y = \frac{{2 + 5 - 1}}{3} = 2}\end{array}} \right.\,\, \Leftrightarrow \,\,G\left( {\frac{1}{3};2} \right)\)

b)     Gọi \(H(x;y)\) là trực tâm của \(\Delta ABC\)

Ta có: \(\overrightarrow {BH}  = (x - 1;y - 5)\) và \(\overrightarrow {CH}  = (x - 3;y + 1)\)

Do \(BH \bot AC\) và \(CH \bot AB\)

Nên \(\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {BH} .\overrightarrow {AC}  = 0}\\{\overrightarrow {CH} .\overrightarrow {AB}  = 0}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{6\left( {x - 1} \right) - 3\left( {y - 5} \right) = 0}\\{4\left( {x - 3} \right) + 3\left( {y + 1} \right) = 0}\end{array}} \right.\)

\( \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{2x - y =  - 3}\\{4x + 3y = 9}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 3}\end{array}} \right.\)

Vậy \(H(0;3).\)

c)      Gọi \(I(x;y)\) là tâm đường tròn ngoại tiếp tam giác \(ABC.\)

Ta có: \(\overrightarrow {IH}  = 3\overrightarrow {IG} \) \( \Leftrightarrow \) \(( - x;3 - y) = 3\left( {\frac{1}{3} - x;2 - y} \right) = \left( {1 - 3x;6 - 3y} \right)\)

\( \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{ - x = 1 - 3x}\\{3 - y = 6 - 3y}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = \frac{1}{2}}\\{y = \frac{3}{2}}\end{array}} \right.\)

Vậy \(I\left( {\frac{1}{2};\frac{3}{2}} \right)\)

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved