Giải bài 44 trang 61 SBT toán 10 - Cánh diều

Đề bài

Người ta muốn thiết kế một vườn hoa hình chữ nhật nội tiếp trong một miếng đất hình tròn có đường kính bằng 50 m (Hình 23). Xác định kích thước vườn hoa hình chữ nhật để tổng quãng đường đi xung quanh vườn hoa đó là 140 m.

Phương pháp giải - Xem chi tiết

Đặt độ dài 1 cạnh của hình chữ nhật là \(x\)(m) (\(0 < x < 50\)).

Biểu diễn cạnh còn lại và chu vi của hình chữ nhật theo x.

Lời giải chi tiết

Đặt độ dài một cạnh của hình chữ nhật là \(x\)(m) (\(0 < x < 50\)).

Độ dài đường chéo hình chữ nhật = Đường kính đường tròn = 50m.

Độ dài cạnh còn lại của hình chữ nhật đó là \(\sqrt {{{50}^2} - {x^2}}  = \sqrt {2500 - {x^2}} \) (m)

Khi đó, tổng quãng đường đi xung quanh vườn hoa bằng chu vi hình chữ nhật là: \(2\left( {\sqrt {2500 - {x^2}}  + x} \right) = 140\) (m)

Ta có phương trình: \(2\left( {\sqrt {2500 - {x^2}}  + x} \right) = 140 \Leftrightarrow \sqrt {2500 - {x^2}}  + x = 70 \Rightarrow \sqrt {2500 - {x^2}}  = 70 - x\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}x > 0\\70 - x \ge 0\\2500 - {x^2} = {\left( {70 - x} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 < x \le 70\\2500 - {x^2} = {x^2} - 140x + {70^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}0 < x \le 70\\2{x^2} - 140x + 2400 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 < x \le 70\\\left[ \begin{array}{l}x = 30\\x = 40\;\end{array} \right.\quad \end{array} \right.\end{array}\)

Nếu \(x = 40\) thì độ dài cạnh còn lại là 30 (m) và ngược lại.

Vậy kích thước vườn hoa là 30 x 40 (m)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved