Đề bài
Tam giác ABC có 2 đường chéo BE và CF bằng nhau (H.4.48). Chứng minh rằng tam giác ABC cân tại đỉnh A.
Phương pháp giải - Xem chi tiết
Chứng minh \(\Delta AEB = \Delta AFC\left( {g - c - g} \right)\), từ đó suy ra 2 cạnh tương ứng bằng nhau.
Lời giải chi tiết
Xét \(\Delta AEB\) và \(\Delta AFC\) có:
\(\widehat {AEB} = \widehat {AFC}( = {90^0})\\BE = CF\left( {gt} \right)\\\widehat {ABE}= \widehat {ACF} (= {90^0} - \widehat A)\\ \Rightarrow \Delta AEB = \Delta AFC\left( {g - c - g} \right)\\ \Rightarrow AB = AC\) ( 2 cạnh tương ứng)
Vậy tam giác ABC cân tại A.
Unit 3: Community Service
Chương 3. Các hình khối trong thực tiễn
Chương 8. Cảm ứng ở sinh vật và tập tính ở động vật
Chương X. Một số hình khối trong thực tiễn
SBT VĂN TẬP 1 - CÁNH DIỀU
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7