Đề bài
Cho tam giác ABC vuông tại đỉnh A. Gọi M là trung điểm của BC và D là điểm nằm trên tia đối của tia MA sao cho MD = MA (H.4.49). Chứng minh rằng:
a)\(\Delta ABD\) vuông tại B.
b)\(\Delta ABD = \Delta BAC\)
c) Các tam giác AMB, AMC là các tam giác cân tại đỉnh M.
Phương pháp giải - Xem chi tiết
a)Chứng minh:\(\Delta AMC = \Delta DMB\left( {c - g - c} \right)\)
b)Dựa vào ý a suy ra BD = CA
c)
-Chứng minh: \(\widehat {BDA} = \widehat {CAD}\left( {AC\parallel BD} \right)\)
-Chứng minh các góc ở đáy bằng nhau.
Lời giải chi tiết
a)
Xét \(\Delta AMC\)và \(\Delta DMB\) có
MA = MD
MC = MB
\(\widehat {AMC} = \widehat {DMB}\)(2 góc đối đỉnh)
\( \Rightarrow \Delta AMC = \Delta DMB\left( {c - g - c} \right)\)
\(\Rightarrow \widehat {DBM} = \widehat {MCA}\) ( 2 góc tương ứng)
Ta có:
\(\widehat {ABD} = \widehat {ABM} + \widehat {DBM} = \widehat {ABC} + \widehat {BCA} = {90^0}\)
Vậy tam giác ABD vuông tại B.
b)
Xét \(\Delta ABD\) và \(\Delta BAC\) có:
\(\begin{array}{l}\widehat {ABD} = \widehat {BAC} = {90^0}\\BD = CA\left( {do\,\Delta AMC = \Delta DMB} \right)\end{array}\)
AB: Cạnh chung
\( \Rightarrow \Delta ABD = \Delta BAC\left( {c - g - c} \right)\)
c)
Ta có: \(\Delta ABD = \Delta BAC\left( {cmt} \right) \Rightarrow \widehat {ACB} = \widehat {BDA}\) ( 2 góc tương ứng)
Mặt khác: \(AC//BD\)(vì cùng vuông góc với AB) nên \(\widehat {BDA} = \widehat {CAD}\)(2 góc so le trong)
Vì vậy ta có: \(\widehat {MCA} = \widehat {ACB} = \widehat {CAD} = \widehat {CAM}\)
Do đó tam giác AMC cân tại đỉnh M nên MA = MC
Vì M là trung điểm của BC nên MB = MC
\(\Rightarrow MA=MB\)
Do đó tam giác AMB cân tại đỉnh M.
Đề khảo sát chất lượng đầu năm
Chủ đề chung 1. Các cuộc phát kiến địa lí
Bài 4: Nghị luận văn học
Unit 11: Travelling in the future
Chương 8. Cảm ứng ở sinh vật và tập tính ở động vật
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7