Đề bài
Cho tam giác \(ABC\) có \(AB = 2,\,\,BC = 4\) và \(\widehat {ABC} = {60^ \circ }.\) Độ dài của vectơ \(\overrightarrow {AC} - \overrightarrow {BA} \) bằng
A. \(2\)
B. \(\sqrt {19} \)
C. \(4\)
D. \(\frac{{\sqrt {19} }}{2}\)
Phương pháp giải - Xem chi tiết
- Chứng minh \(\Delta BAM\) đều với \(M\) là trung điểm \(BC\)
- Chứng minh \(\overrightarrow {AC} - \overrightarrow {BA} = 2\overrightarrow {AM} \)
Lời giải chi tiết
Gọi \(M\) là trung điểm \(BC\)
\( \Rightarrow \) \(BM = \frac{1}{2}BC = 2\)
Xét \(\Delta ABM\) có: \(AB = BM = 2\)
\( \Rightarrow \) \(\Delta BAM\) cân tại \(B\)
Mà \(\widehat {ABM} = {60^ \circ }\)
\( \Rightarrow \) \(\Delta BAM\) đều
\( \Rightarrow \) \(AM = 2\)
Ta có: \(\left| {\overrightarrow {AC} - \overrightarrow {BA} } \right| = \left| {\overrightarrow {AC} + \overrightarrow {AB} } \right| = 2\left| {\overrightarrow {AM} } \right| = 2.2 = 4\)
Chọn C.
Phần làm văn
Chủ đề 3. Năng lượng
Grammar Reference
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Toán lớp 10
Chủ đề 2: Mạng máy tính và internet
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10