Đề bài
Trong một trò chơi, bạn Hằng ghi tên 63 tỉnh, thành phố trực thuộc Trung ương của VN (tính đến năm 2021) vào 63 phiếu, hai phiếu khác nhau ghi tên hai nơi khác nhau, rồi bỏ tất cả các phiếu đó vào một hộp kín. Bạn Hoài rút ngẫu nhiên 2 phiếu. Tính xác suất của mỗi biến cố sau:
a) A: “Hai phiếu rút được ghi tên hai nơi bắt đầu bằng âm tiết Hà”
b) B: “Hai phiếu rút được ghi tên hai nơi bắt đầu bằng chữ K”
c) C: “Hai phiếu rút được ghi tên hai nơi bắt đầu bằng chữ B”
Phương pháp giải - Xem chi tiết
Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)
Lời giải chi tiết
Chọn 2 tỉnh thành trong số 63 tình thành \( \Rightarrow n\left( \Omega \right) = C_{63}^2\)
a) A: “Hai phiếu rút được ghi tên hai nơi bắt đầu bằng âm tiết Hà”: có 4 tỉnh: HN, Hà Giang, Hà Tĩnh, Hà Nam \( \Rightarrow n\left( A \right) = C_4^2 = 6\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{6}{{C_{63}^2}} = \frac{2}{{651}}\)
b) B: “Hai phiếu rút được ghi tên hai nơi bắt đầu bằng chữ K”: có 3 tỉnh: Khánh Hòa, Kiên Giang, Kon Tum \( \Rightarrow n\left( B \right) = C_3^2 = 3\)
\( \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{3}{{C_{63}^2}} = \frac{1}{{651}}\)
c) C: “Hai phiếu rút được ghi tên hai nơi bắt đầu bằng chữ B”: có 10 tỉnh: Bà Rịa – Vũng Tàu, Bắc Giang, Bắc Kạn, Bắc Ninh, Bạc Liêu, Bến Tre, Bình Phước, Bình Dương, Bình Định, Bình Thuận \( \Rightarrow n\left( C \right) = C_{10}^2 = 45\)
\( \Rightarrow P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{{45}}{{C_{63}^2}} = \frac{5}{{217}}\)
Chương 11. Phát triển bền vững và tăng trưởng xanh
Chủ đề 8: Pháp luật nước Cộng hòa xã hội chủ nghĩa Việt Nam
Chủ đề 2. Bảng tuần hoàn các nguyên tố hóa học
Tác giả tác phẩm - Cánh Diều
Chủ đề 1: Xây dựng nhà trường
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10