Đề bài
Cho dãy số \(\left( {{u_n}} \right)\) thoả mãn \({u_n} < M\) với mọi n. Chứng minh rằng nếu \(\lim {u_n} = a\) thì \(a \le M\)
Phương pháp giải - Xem chi tiết
Xét dãy số \(\left( {{v_n}} \right)\) với \({v_n} = M - {u_n}\) và tính \(\lim v_n \) rồi nhận xét.
Lời giải chi tiết
Xét dãy số \(\left( {{v_n}} \right)\) với \({v_n} = M - {u_n}\)
\({u_n} < M\) với mọi n \(\Rightarrow {v_n} > 0\) với mọi n. (1)
Mặt khác, \(\lim {v_n} = \lim \left( {M - {u_n}} \right) = M - a\) (2)
Từ (1) và (2) suy ra \(M - a \ge 0\) hay \(a \le M\).
Unit 7: Healthy lifestyle
HÌNH HỌC-SBT TOÁN 11 NÂNG CAO
Chủ đề 3. Điện trường
Phần ba. Sinh học cơ thể
Unit 4: Volunteer Work - Công việc tình nguyện
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11