Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Ôn tập chương III. Hệ hai phương trình bậc nhất hai ẩn
Bài 1. Hàm số bậc hai y=ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số bậc hai
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Bài tập ôn chương IV. Hàm số y=ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Giải các phương trình:
LG a
LG a
\(\displaystyle {{12} \over {x - 1}} - {8 \over {x + 1}} = 1\)
Phương pháp giải:
* Đặt ĐKXĐ của phương trình, khử mẫu để đưa phương trình về dạng \(a{x^2} + bx + c = 0\;(a \ne 0)\).
* Phương trình \(a{x^2} + bx + c = 0\;(a \ne 0)\) và biệt thức \(\Delta' = {b'^2} - ac\):
+) Nếu \(\Delta' > 0\) thì phương trình có hai nghiệm phân biệt:
\({x_1}\)= \(\dfrac{-b' + \sqrt{\bigtriangleup' }}{a}\) và \({x_2}\)= \(\dfrac{-b' - \sqrt{\bigtriangleup' }}{a}\)
+) Nếu \(\Delta' = 0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b' }{a}\).
+) Nếu \(\Delta' < 0\) thì phương trình vô nghiệm.
Lời giải chi tiết:
\(\displaystyle {{12} \over {x - 1}} - {8 \over {x + 1}} = 1\)
ĐKXĐ: \(x \ne \pm 1\)
\( \Rightarrow 12\left( {x + 1} \right) - 8\left( {x - 1} \right) \)\(\,= \left( {x - 1} \right)\left( {x + 1} \right) \)
\( \Leftrightarrow 12x + 12 - 8x + 8 = {x^2} - 1 \)
\( \Leftrightarrow {x^2} - 4x - 21 = 0 \)
\(\Delta ' = {\left( { - 2} \right)^2} - 1.\left( { - 21} \right) = 4 + 21 = 25 \)
\( \sqrt {\Delta '} = \sqrt {25} = 5 \)
\(\displaystyle {x_1} = {{2 + 5} \over 1} = 7 \) (thỏa mãn)
\(\displaystyle {x_2} = {{2 - 5} \over 1} = - 3 \) (thỏa mãn)
Vậy phương trình có hai nghiệm: \({x_1} = 7;{x_2} = - 3\).
LG b
LG b
\(\displaystyle {{16} \over {x - 3}} + {{30} \over {1 - x}} = 3\)
Phương pháp giải:
* Đặt ĐKXĐ của phương trình, khử mẫu để đưa phương trình về dạng \(a{x^2} + bx + c = 0\;(a \ne 0)\).
* Phương trình \(a{x^2} + bx + c = 0\;(a \ne 0)\) và biệt thức \(\Delta' = {b'^2} - ac\):
+) Nếu \(\Delta' > 0\) thì phương trình có hai nghiệm phân biệt:
\({x_1}\)= \(\dfrac{-b' + \sqrt{\bigtriangleup' }}{a}\) và \({x_2}\)= \(\dfrac{-b' - \sqrt{\bigtriangleup' }}{a}\)
+) Nếu \(\Delta' = 0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b' }{a}\).
+) Nếu \(\Delta' < 0\) thì phương trình vô nghiệm.
Lời giải chi tiết:
\( \displaystyle {{16} \over {x - 3}} + {{30} \over {1 - x}} = 3\)
ĐKXĐ: \(x \ne 3;x \ne 1\)
\(\Rightarrow 16\left( {1 - x} \right) + 30\left( {x - 3} \right) \)\(\,= 3\left( {x - 3} \right)\left( {1 - x} \right) \)
\( \Leftrightarrow 16 - 16x + 30x - 90 = 3x - 3{x^2}\)\(\, - 9 + 9x \)
\( \Leftrightarrow 3{x^2} + 2x - 65 = 0 \)
\( \Delta ' = {1^2} - 3.\left( { - 65} \right) \)\(\,= 1 + 195 = 196 > 0 \)
\( \sqrt {\Delta '} = \sqrt {196} = 14 \)
\( \displaystyle {x_1} = {{ - 1 + 14} \over 3} = {{13} \over 3} \) (thỏa mãn)
\( \displaystyle {x_2} = {{ - 1 - 14} \over 3} = - 5 \) (thỏa mãn)
Vậy phương trình có hai nghiệm: \(\displaystyle {x_1} = {{13} \over 3};{x_2} = - 5\).
LG c
LG c
\(\displaystyle {{{x^2} - 3x + 5} \over {\left( {x - 3} \right)\left( {x + 2} \right)}} = {1 \over {x - 3}}\)
Phương pháp giải:
Đặt ĐKXĐ của phương trình, khử mẫu để đưa phương trình về dạng \(a{x^2} + bx + c = 0\;(a \ne 0)\).
Từ đó suy ra \(x.\)
Lời giải chi tiết:
\(\displaystyle {{{x^2} - 3x + 5} \over {\left( {x - 3} \right)\left( {x + 2} \right)}} = {1 \over {x - 3}}\)
ĐKXĐ: \(x \ne 3;x \ne - 2\)
\( \Rightarrow {x^2} - 3x + 5 = x + 2 \)
\(\Leftrightarrow {x^2} - 4x + 3 = 0\) (*)
Ta có \(a + b + c = 1 + \left( { - 4} \right) + 3 = 0 \)
Phương trình (*) có hai nghiệm:
\({x_1} = 1\) (thỏa mãn); \({x_2} = 3 \) (loại)
Vậy phương trình đã cho có một nghiệm \(x = 1\).
LG d
LG d
\(\displaystyle {{2x} \over {x - 2}} - {x \over {x + 4}} = {{8x + 8} \over {\left( {x - 2} \right)\left( {x + 4} \right)}}\)
Phương pháp giải:
* Đặt ĐKXĐ của phương trình, khử mẫu để đưa phương trình về dạng \(a{x^2} + bx + c = 0\;(a \ne 0)\).
* Phương trình \(a{x^2} + bx + c = 0\;(a \ne 0)\) và biệt thức \(\Delta' = {b'^2} - ac\):
+) Nếu \(\Delta' > 0\) thì phương trình có hai nghiệm phân biệt:
\({x_1}\)= \(\dfrac{-b' + \sqrt{\bigtriangleup' }}{a}\) và \({x_2}\)= \(\dfrac{-b' - \sqrt{\bigtriangleup' }}{a}\)
+) Nếu \(\Delta' = 0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b' }{a}\).
+) Nếu \(\Delta' < 0\) thì phương trình vô nghiệm.
Lời giải chi tiết:
\(\displaystyle {{2x} \over {x - 2}} - {x \over {x + 4}} = {{8x + 8} \over {\left( {x - 2} \right)\left( {x + 4} \right)}}\)
ĐKXĐ: \(x \ne 2;x \ne - 4\)
\(\eqalign{
& \Rightarrow 2x\left( {x + 4} \right) - x\left( {x - 2} \right) = 8x + 8 \cr
& \Leftrightarrow 2{x^2} + 8x - {x^2} + 2x = 8x + 8 \cr
& \Leftrightarrow {x^2} + 2x - 8 = 0 \cr
& \Delta ' = {1^2} - 1.\left( { - 8} \right) = 1 + 8 = 9 > 0 \cr
& \sqrt {\Delta '} = \sqrt 9 = 3 \cr} \)
\(\;\;\displaystyle {x_1} = {{ - 1 + 3} \over 1} = 2 \) (loại)
\( \;\;\displaystyle {x_2} = {{ - 1 - 3} \over 1} = - 4\) (loại)
Vậy phương trình đã cho vô nghiệm.
LG e
LG e
\(\displaystyle {{{x^3} + 7{x^2} + 6x - 30} \over {{x^3} - 1}} \)\(\,\displaystyle = {{{x^2} - x + 16} \over {{x^2} + x + 1}}\)
Phương pháp giải:
* Đặt ĐKXĐ của phương trình, khử mẫu để đưa phương trình về dạng \(a{x^2} + bx + c = 0\;(a \ne 0)\).
* Phương trình \(a{x^2} + bx + c = 0\;(a \ne 0)\) và biệt thức \(\Delta = {b^2} - 4ac\):
+) Nếu \(\Delta > 0\) thì phương trình có hai nghiệm phân biệt:
\({x_1}\)= \(\dfrac{-b + \sqrt{\bigtriangleup }}{2a}\) và \({x_2}\)= \(\dfrac{-b - \sqrt{\bigtriangleup }}{2a}\)
+) Nếu \(\Delta = 0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b }{2a}\).
+) Nếu \(\Delta < 0\) thì phương trình vô nghiệm.
Lời giải chi tiết:
\(\displaystyle {{{x^3} + 7{x^2} + 6x - 30} \over {{x^3} - 1}} = {{{x^2} - x + 16} \over {{x^2} + x + 1}}\)
ĐKXĐ: \(x \ne 1\)
\(\displaystyle \Leftrightarrow {{{x^3} + 7{x^2} + 6x - 30} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} \)\(\,\displaystyle= {{{x^2} - x + 16} \over {{x^2} + x + 1}} \)
\(\displaystyle \Rightarrow {x^3} + 7{x^2} + 6x - 30 \)\(\,= \left( {{x^2} - x + 16} \right)\left( {x - 1} \right) \)
\(\Leftrightarrow {x^3} + 7{x^2} + 6x - 30 = {x^3} - {x^2} \)\(\,+ 16x - {x^2} + x - 16 \)
\( \Leftrightarrow 9{x^2} - 11x - 14 = 0 \)
\( \Delta = {\left( { - 11} \right)^2} - 4.9.\left( { - 14} \right) = 625 > 0 \)
\( \sqrt \Delta = \sqrt {625} = 25 \)
\(\displaystyle {x_1} = {{11 + 25} \over {2.9}} = {{36} \over {18}} = 2 \) (thỏa mãn)
\(\displaystyle {x_2} = {{11 - 25} \over {2.9}} = {{ - 14} \over {18}} = - {7 \over 9} \) (thỏa mãn)
Vậy phương trình đã cho có hai nghiệm \({x_1} = 2;{x_2} \displaystyle = - {7 \over 9}\).
LG f
LG f
\(\displaystyle {{{x^2} + 9x - 1} \over {{x^4} - 1}} = {{17} \over {{x^3} + {x^2} + x + 1}}\)
Phương pháp giải:
* Đặt ĐKXĐ của phương trình, khử mẫu để đưa phương trình về dạng \(a{x^2} + bx + c = 0\;(a \ne 0)\).
* Phương trình \(a{x^2} + bx + c = 0\;(a \ne 0)\) và biệt thức \(\Delta' = {b'^2} - ac\):
+) Nếu \(\Delta' > 0\) thì phương trình có hai nghiệm phân biệt:
\({x_1}\)= \(\dfrac{-b' + \sqrt{\bigtriangleup' }}{a}\) và \({x_2}\)= \(\dfrac{-b' - \sqrt{\bigtriangleup' }}{a}\)
+) Nếu \(\Delta' = 0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b' }{a}\).
+) Nếu \(\Delta' < 0\) thì phương trình vô nghiệm.
Lời giải chi tiết:
\(\displaystyle {{{x^2} + 9x - 1} \over {{x^4} - 1}} = {{17} \over {{x^3} + {x^2} + x + 1}}\)
ĐKXĐ: \(x \ne \pm 1\)
\(\displaystyle \Leftrightarrow {{{x^2} + 9x - 1} \over {\left( {{x^2} + 1} \right)\left( {{x^2} - 1} \right)}} \)\(\,\displaystyle = {{17} \over {\left( {x + 1} \right)\left( {{x^2} + 1} \right)}}\)
\( \Rightarrow {x^2} + 9x - 1 = 17\left( {x - 1} \right)\)
\( \Leftrightarrow {x^2} + 9x - 1 = 17x - 17 \)
\( \Leftrightarrow {x^2} + 9x - 17x - 1 + 17 = 0 \)
\(\Leftrightarrow {x^2} - 8x + 16 = 0 \) (2*)
\(\Delta ' = {\left( { - 4} \right)^2} - 1.16 = 16 - 16 = 0 \)
Phương trình (2*) có nghiệm kép: \({x_1} = {x_2} = 4\) (thỏa mãn)
Vậy phương trình đã cho có một nghiệm \(x = 4\).