1. Nội dung câu hỏi
Tính đạo hàm của mỗi hàm số sau:
a) \(y = {\left( {2{x^2} + 1} \right)^3};\)
b) \(y = \sin 3x\cos 2x - \sin 2x\cos 3x;\)
c) \(y = \frac{{\tan x + \tan 2x}}{{1 - \tan x\tan 2x}};\)
d) \(y = \frac{{{e^{3x + 1}}}}{{{2^{x - 1}}}}.\)
2. Phương pháp giải
Sử dụng các quy tắc tính đạo hàm của hàm hợp.
3. Lời giải chi tiết
a) \(y' = {\left( {{{\left( {2{x^2} + 1} \right)}^3}} \right)^\prime } = 3{\left( {2{x^2} + 1} \right)^2}.{\left( {2{x^2} + 1} \right)^\prime } = 3.4x.{\left( {2{x^2} + 1} \right)^2} = 12x{\left( {2{x^2} + 1} \right)^2}.\)
b) Ta có: \(y = \sin 3x\cos 2x - \sin 2x\cos 3x = \sin \left( {3x - 2x} \right) = \sin x.\)
\(y' = {\left( {\sin x} \right)^\prime } = \cos x.\)
c) Ta có: \(y = \frac{{\tan x + \tan 2x}}{{1 - \tan x\tan 2x}} = \tan \left( {x + 2x} \right) = \tan 3x.\)
\(y' = {\left( {\tan 3x} \right)^\prime } = \frac{3}{{{{\cos }^2}3x}}.\)
d) \(y' = {\left( {\frac{{{e^{3x + 1}}}}{{{2^{x - 1}}}}} \right)^\prime } = \frac{{3{e^{3x + 1}}{{.2}^{x - 1}} - {2^{x - 1}}\ln 2.{e^{3x + 1}}}}{{{2^{2\left( {x - 1} \right)}}}} = \frac{{{e^{3x + 1}}{{.2}^{x - 1}}\left( {3 - \ln 2} \right)}}{{{2^{2\left( {x - 1} \right)}}}} = \frac{{{e^{3x + 1}}\left( {3 - \ln 2} \right)}}{{{2^{x - 1}}}}.\)
CHƯƠNG II: DÒNG ĐIỆN KHÔNG ĐỔl
Phần một: Giáo dục kinh tế
Chương II. Sóng
Chuyên đề 3: Một số vấn đề về pháp luật lao động
SOẠN VĂN 11 TẬP 1
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11