Bài 1. Sự xác định đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II. Đường tròn
Đề bài
Cho \(x\) là một góc nhọn, biểu thức sau đây có giá trị âm hay dương? Vì sao?
a) \(sin x-1\)
b) \(1-\cos x\)
c) \(\sin x-\cos x\)
d) \(tgx-cotgx\)
Phương pháp giải - Xem chi tiết
Với \(0^\circ < \alpha < 90^\circ \) ta có \(\alpha\) tăng thì sin\(\alpha\) tăng.
Hay \(\alpha < \beta \) thì \(\sin \alpha < \sin \beta. \)
Với \(0^\circ < \alpha < 90^\circ \) ta có \(\alpha\) tăng thì cos\(\alpha\) giảm.
Hay \(\alpha < \beta \) thì \(\cos \alpha > \cos \beta .\)
Với \(0^\circ < \alpha < 90^\circ \) ta có \(\alpha\) tăng thì tg\(\alpha\) tăng.
Hay \(\alpha < \beta \) thì \(tg \alpha < tg \beta. \)
Với \(0^\circ < \alpha < 90^\circ \) ta có \(\alpha\) tăng thì cotg\(\alpha\) giảm.
Hay \(\alpha < \beta \) thì \(cotg \alpha > cotg \beta .\)
Lời giải chi tiết
a) Ta có: \(0^\circ < \alpha < 90^\circ \) với thì \({\mathop{\rm sinx}\nolimits} < 1\), suy ra \({\mathop{\rm sinx}\nolimits} - 1 < 0\)
b) Ta có: \(0^\circ < \alpha < 90^\circ \) với thì \({\mathop{\rm cosx}\nolimits} < 1\), suy ra \(1 - \cos x > 0\)
c) Ta có:
* Nếu \(x = 45°\) thì \(sinx = cosx\), suy ra: \({\mathop{\rm s}\nolimits} {\rm{inx}} - \cos x = 0\)
* Nếu \(x < 45°\) thì \(\cos x = \sin (90^\circ - x)\)
Vì \(x < 45°\) nên \(90^\circ - x > 45^\circ \) hay \(x<90^\circ - x \), suy ra: \({\mathop{\rm s}\nolimits} {\rm{inx}} < \sin (90^\circ - x)\)
Vậy \(\sin x<\cos x\) hay \({\mathop{\rm s}\nolimits} {\rm{inx}} - \cos x < 0\)
* Nếu \(x > 45°\) thì \(\cos x = \sin (90^\circ - x)\)
Vì \(x > 45°\) nên \(90^\circ - x < 45^\circ \) hay \(x>90^\circ - x \), suy ra: \({\mathop{\rm s}\nolimits} {\rm{inx}} > \sin (90^\circ - x)\)
Vậy \(\sin x>\cos x\) hay \({\mathop{\rm s}\nolimits} {\rm{inx}} - c{\rm{osx > 0}}\).
d) Ta có:
* Nếu \(x = 45°\) thì \(tgx = cotgx\), suy ra: \(tgx - cotgx = 0\)
* Nếu \(x < 45°\) thì \(\cot gx = tg(90^\circ - x)\)
Vì \(x < 45°\) nên \(90^\circ - x > 45^\circ \) hay \(x<90^\circ - x \), suy ra: \(tgx < tg(90^\circ - x)\)
Vậy \(tgx < cotgx \) hay \(tgx – cotgx < 0.\)
* Nếu \(x > 45°\) thì \(\cot gx = tg(90^\circ - x)\)
Vì \(x > 45°\) nên \(90^\circ - x < 45^\circ \) hay \(x>90^\circ - x \), suy ra: \(tgx > tg(90^\circ - x)\)
Vậy \(tgx > cotgx \) hay \(tgx – cotgx > 0.\)
Đề thi vào 10 môn Anh Hải Phòng
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Giáo dục công dân lớp 9
CHƯƠNG I. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG
Đề kiểm tra 15 phút - Chương 8 - Sinh 9
Bài 11: Trách nhiệm của thanh niên trong sự nghiệp công nghiệp hóa, hiện đại hóa đất nước