Bài 1. Nhân đơn thức với đa thức
Bài 2. Nhân đa thức với đa thức
Bài 3, 4, 5. Những hằng đẳng thức đáng nhớ
Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
Bài 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
Bài 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Bài 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Bài 10. Chia đơn thức cho đơn thức
Bài 11. Chia đa thức cho đơn thức
Bài 12. Chia đa thức một biến đã sắp xếp
Bài tập ôn chương I. Phép nhân và phép chia các đa thức
Bài 1. Phân thức đại số
Bài 2. Tính chất cơ bản của phân thức
Bài 3. Rút gọn phân thức
Bài 4. Quy đồng mẫu thức nhiều phân thức
Bài 5. Phép cộng các phân thức đại số
Bài 6. Phép trừ các phân thức đại số
Bài 7. Phép nhân các phân thức đại số
Bài 8. Phép chia các phân thức đại số
Bài 9. Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức
Bài tập ôn chương II. Phân thức đại số
LG a
Tìm một phân thức (một biến) mà giá trị của nó được xác định với mọi giá trị của biến khác các số nguyên lẻ lớn hơn \(5\) và nhỏ hơn \(10\).
Phương pháp giải:
- Xác định tập hợp của biến thỏa mãn điều kiện là số nguyên lẻ lớn hơn \(5\) và nhỏ hơn \(10\).
- Từ thông tin đề bài, viết phân thức thích hợp.
Lời giải chi tiết:
Ta có tập hợp số nguyên lẻ lớn hơn \(5\) và nhỏ hơn \(10\) là \(\{ 7; 9 \}\)
Một phân thức một biến mà giá trị của nó xác định với mọi giá trị của biến khác các số nguyên lẻ lớn hơn \(5\) và nhỏ hơn \(10\), nghĩa là \(x \ne 7\) và \(x \ne 9\).
Suy ra: \(x - 7 \ne 0\) và \(x - 9 \ne 0\)
Ta chọn phân thức là \(\displaystyle {a \over {\left( {x - 7} \right)\left( {x - 9} \right)}}\) (với \(a\) là một hằng số)
LG b
Tìm một phân thức (một biến) mà giá trị của nó được xác định với mọi giá trị của biến khác \( \pm \sqrt 2 \)
Phương pháp giải:
- Xác định tập hợp của biến thỏa mãn điều kiện là số nguyên lẻ lớn hơn \(5\) và nhỏ hơn \(10\).
- Từ thông tin đề bài, viết phân thức thích hợp.
Lời giải chi tiết:
Phân thức một biến mà giá trị của nó được xác định với mọi giá trị của biến khác \( \pm \sqrt 2 \) \( \Rightarrow x \ne \sqrt 2 \) và \(x \ne - \sqrt {2}. \)
Suy ra: \(x - \sqrt 2 \ne 0\) và \(x + \sqrt 2 \ne 0,\) ta chọn phân thức:
\(\displaystyle {a \over {\left( {x - \sqrt 2 } \right)\left( {x + \sqrt 2 } \right)}} = {a \over {{x^2} - 2}}\) (với \(a\) là một hằng số).
Tải 10 đề kiểm tra 15 phút - Chương 5
Tests
Tải 10 đề kiểm tra 1 tiết - Chương 8
Bài 9. Phòng ngừa tai nạn vũ khí, cháy, nổ và các chất độc hại
Bài 10: Quyền và nghĩa vụ lao động của công dân
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8