Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Ôn tập chương III. Hệ hai phương trình bậc nhất hai ẩn
Bài 1. Hàm số bậc hai y=ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số bậc hai
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Bài tập ôn chương IV. Hàm số y=ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề bài
Chứng minh rằng khi \(a\) và \(c\) trái dấu thì phương trình trùng phương \(a{x^4} + b{x^2} + c = 0\) chỉ có hai nghiệm và chúng là hai số đối nhau.
Phương pháp giải - Xem chi tiết
Giải phương trình trùng phương \(a{x^4} + {\rm{ }}b{x^2} + {\rm{ }}c{\rm{ }} = {\rm{ }}0{\rm{ }}\left( {a{\rm{ }} \ne {\rm{ }}0} \right)\)
+ Đặt \({x^2} = {\rm{ }}t,{\rm{ }}t{\rm{ }} \ge {\rm{ }}0\).
+ Giải phương trình \(a{t^2} + {\rm{ }}bt{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}0\).
+ Với mỗi giá trị tìm được của \(t\) (thỏa mãn \( t \ge 0\)), lại giải phương trình \({x^2} = {\rm{ }}t\).
Lời giải chi tiết
Phương trình \(a{x^4} + b{x^2} + c = 0\)
Đặt \({x^2} = t \Rightarrow t \ge 0\)
Ta có phương trình ẩn \(t\): \(a{t^2} + bt + c = 0\)
Vì \(a\) và \(c\) trái dấu suy ra \(ac < 0.\)
Phương trình có hai nghiệm phân biệt \(t_1\) và \(t_2\).
Theo hệ thức Vi-ét ta có: \(\displaystyle {t_1}.{t_2} = {c \over a} < 0\) nên \(t_1\) và \(t_2\) trái dấu.
Giả sử \(t_1< 0; t_2> 0\).
Vì \(t ≥ 0 ⇒ t_1< 0\) (loại).
\( \Rightarrow {x^2} = {t_2} \Rightarrow x = \pm \sqrt {{t_2}} \).
Vậy phương trình trùng phương \(a{x^4} + b{x^2} + c = 0\) có hệ số \(a\) và \(c\) trái dấu thì phương trình trùng phương có \(2\) nghiệm đối nhau.
Tải 10 đề thi học kì 2 Văn 9
Bài 37. Thực hành: Vẽ và phân tích biểu đồ về tình hình sản xuất của ngành thủy sản ở Đồng bằng sông Cửu Long
Một số bài nghị luận văn học tham khảo
Đề kiểm tra 1 tiết - Chương 9 - Sinh 9
ĐỊA LÍ KINH TẾ