Bài 5 trang 100 sách bài tập toán 10 - Chân trời sáng tạo

Đề bài

Trên tường có 1 đĩa hình tròn có cấu tạo đồng chất và cân đối. Mặt đĩa được chia thành 12 hình quạt bằng nhau và được đánh số từ 1 đến 12. Trọng quay đĩa dừng trục gắn ở tâm 3 lần và quan sát xem mỗi khi dừng lại mũi tên chỉ vào ô ghi só mấy. Tính xác suất của các biến cố:

A: “Cả 3 lần mũi tên đều chỉ vào ô ghi số lẻ”

B: “Có đúng 2 lần mũi tên chỉ vào ô ghi số lẻ”

C: “Tích 3 số mũi tên chỉ vào là số nguyên tố”

Phương pháp giải - Xem chi tiết

Phép thử có không gian mẫu gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là 1 biến cố

Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega  \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)

Lời giải chi tiết

Mỗi lần quay, có 12 kết quả có thể xảy ra.

Vậy 3 lần quay, số kết quả có thể xảy ra là: \(n\left( \Omega  \right) = 12.12.12 = {12^3}\)

a) Trong 12 số, có 6 số lẻ là: 1; 3; 5; 7; 9; 11

Do đó mỗi lần quay, có 6 trường hợp mũi tên chỉ vào số lẻ.

Số trường hợp để 3 lần quay mũi tên đều chỉ vào số lẻ là: 6.6.6 hay \(n\left( A \right) = {6^3}\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{{6^3}}}{{{{12}^3}}} = \frac{1}{8}\)

b) Để biến cố B xảy ra cần thực hiện 3 công đoạn:

Công đoạn 1: Chọn 2 trong 3 lần (mũi tên chỉ vào số lẻ) => có \(C_3^2\) cách

Công đoạn 2: Hai lần mũi tên chỉ vào số lẻ

Có 6 cách để chỉ vào 1 trong 6 số lẻ, do đó hai lần có: 6.6 =36 cách

Công đoạn 3: Một lần mũi tên chỉ vào số chẵn

Có 6 số chẵn trên bảng, do đó có 6 cách để chỉ vào số chẵn

Theo quy tắc nhân ta có: \(n\left( B \right) = C_3^2.36.6 = 648\)

\( \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{{648}}{{{{12}^3}}} = \frac{3}{8}\)

c) Có 5 số nguyên số trong 12 số đã cho là: 2, 3, 5, 7, 11

Để tích 3 số mũi tên chỉ vào là số nguyên tố thì 2 lần quay vào số 1 và 1 lần quay vào 1 trong 5 số nguyên tố đó.

+ Chọn 1 trong 3 lần để quay vào số nguyên tố: có 3 cách

+ Mũi tên quay vào 1 số nguyên tố: Có 5 cách

Theo quy tắc nhân, số kết quả thuận lợi cho biến cố C là: \(n\left( C \right) = 5.3\)

\( \Rightarrow P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega  \right)}} = \frac{{5.3}}{{{{12}^3}}} = \frac{5}{{576}}\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved