1. Nội dung câu hỏi
Trong Hình 9, tìm các vectơ \(\vec u\) và \(\vec v\) sao cho phép tịnh tiến \({T_{\vec u}}\)biến hình mũi tên (A) thành hình mũi tên (B) và phép tịnh tiến \({T_{\vec v}}\) biến hình mũi tên (A) thành hình mũi tên (C).
2. Phương pháp giải
Quan sát hình 9 để làm
3. Lời giải chi tiết
+ Gọi \({E_1}\) là một điểm trên hình mũi tên (A) và \(\vec u\) có phương song song với trục đối xứng của hình mũi tên (A), độ dài bằng độ dài từ điểm đầu tới điểm cuối của mũi tên (A) (hình vẽ).
Lấy điểm \({E_2}\;\) sao cho \(\overrightarrow {{E_1}{E_2}} = \vec u\)
Khi đó \({E_2}\;\) là một điểm trên hình mũi tên (B) có vị trí tương ứng với điểm \({E_1}\) trên hình mũi tên (A).
Tương tự như vậy, với mỗi điểm \({M_1}\) bất kì trên hình mũi tên (A), ta lấy điểm \({M_2}\) sao cho \(\overrightarrow {{M_1}{M_2}} = \vec u\) thì ta được tập hợp các điểm \({M_2}\) tạo thành hình mũi tên (B).
Do đó phép tịnh tiến theo \(\vec u\) biến hình mũi tên (A) thành hình mũi tên (B).
+ Ta gọi (D) là hình mũi tên nằm bên dưới hình mũi tên (A) và bên trái hình mũi tên (C) (như hình vẽ).
Gọi \({E_3}\) là một điểm trên hình mũi tên (D) có vị trí tương ứng với điểm E1 trên hình mũi tên (A).
Giả sử \(\vec x\) là vectơ có phương vuông góc với trục đối xứng của hình mũi tên (A), độ dài bằng độ dài từ điểm E1 đến điểm E3 (hình vẽ).
Tức là, \(\vec x = \overrightarrow {{E_1}{E_3}} \)
Lấy điểm \({E_4}\) sao cho tứ giác \({E_1}{E_2}{E_4}{E_3}\;\) là hình bình hành.
Áp dụng quy tắc hình bình hành, ta được \(\overrightarrow {{E_1}{E_4}} = \overrightarrow {{E_1}{E_2}} + \overrightarrow {{E_1}{E_3}} = \vec u + \vec x\).
Lúc này, ta thấy \({E_4}\) là một điểm trên hình mũi tên (C) có vị trí tương ứng với điểm \({E_1}\) trên hình mũi tên (A).
Tương tự như vậy, với mỗi điểm \({M_1}\) bất kì trên hình mũi tên (A), ta lấy điểm \({M_4}\) sao cho \(\overrightarrow {{M_1}{M_4}} = \vec u + \vec x\) thì ta được tập hợp các điểm M4 tạo thành hình mũi tên (C).
Do đó phép tịnh tiến theo \(\vec v = \vec u + \vec x\) biến hình mũi tên (A) thành hình mũi tên (C).
Chương 5. Tệp và thao tác với tệp
Tải 10 đề kiểm tra 15 phút - Chương VII - Hóa học 11
Bài 4. Thực hành: Tìm hiểu những cơ hội và thách thức của toàn cầu hóa đối với các nước đang phát triển - Tập bản đồ Địa lí 11
Tải 10 đề kiểm tra 1 tiết - Chương 4
Chủ đề 4: Chiến thuật phòng thủ và thi đấu
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11