1. Nội dung câu hỏi
So sánh các cặp số sau:
a) \(\sqrt 3 \) và \(\sqrt[5]{{27}}\);
b) \({\left( {\frac{1}{9}} \right)^4}\) và \({\left( {\frac{1}{{27}}} \right)^3}\);
c) \(\sqrt[3]{{\frac{1}{5}}}\) và \(\sqrt[5]{{25}}\);
d) \(\sqrt[9]{{0,{7^{10}}}}\) và \(\sqrt[{10}]{{0,{7^9}}}\).
2. Phương pháp giải
Sử dụng kiến thức về sự biến thiên của hàm số mũ \(y = {a^x}\) để so sánh:
+ Nếu \(a > 1\) thì hàm số \(y = {a^x}\) đồng biến trên \(\mathbb{R}\).
+ Nếu \(0 < a < 1\) thì hàm số \(y = {a^x}\) nghịch biến trên \(\mathbb{R}\).
3. Lời giải chi tiết
a) Ta có: \(\sqrt 3 = {3^{\frac{1}{2}}},\sqrt[5]{{27}} = \sqrt[5]{{{3^3}}} = {3^{\frac{3}{5}}}\)
Vì \(3 > 1\) nên hàm số \(y = {3^x}\) đồng biến trên \(\mathbb{R}\) và \(\frac{1}{2} < \frac{3}{5}\) nên \({3^{\frac{1}{2}}} < {3^{\frac{3}{5}}}\) hay \(\sqrt 3 < \sqrt[5]{{27}}\).
b) Ta có: \({\left( {\frac{1}{9}} \right)^4} = {\left( {\frac{1}{3}} \right)^8},{\left( {\frac{1}{{27}}} \right)^3} = {\left( {\frac{1}{3}} \right)^9}\)
Vì \(\frac{1}{3} < 1\) nên hàm số \(y = {\left( {\frac{1}{3}} \right)^x}\) nghịch biến trên \(\mathbb{R}\) và \(8 < 9\) nên \({\left( {\frac{1}{3}} \right)^8} > {\left( {\frac{1}{3}} \right)^9}\) hay \({\left( {\frac{1}{9}} \right)^4} > {\left( {\frac{1}{{27}}} \right)^3}\).
c) Ta có: \(\sqrt[3]{{\frac{1}{5}}} = {5^{\frac{{ - 1}}{3}}},\sqrt[5]{{25}} = {5^{\frac{2}{5}}}\)
Vì \(5 > 1\) nên hàm số \(y = {5^x}\) đồng biến trên \(\mathbb{R}\) và \(\frac{{ - 1}}{3} < \frac{2}{5}\) nên \({5^{\frac{{ - 1}}{3}}} < {5^{\frac{2}{5}}}\) hay \(\sqrt[3]{{\frac{1}{5}}} < \sqrt[5]{{25}}\).
d) Ta có: \(\sqrt[9]{{0,{7^{10}}}} = 0,{7^{\frac{{10}}{9}}},\sqrt[{10}]{{0,{7^9}}} = 0,{7^{\frac{9}{{10}}}}\)
Vì \(0 < 0,7 < 1\) nên hàm số \(y = 0,{7^x}\) nghịch biến trên \(\mathbb{R}\) và \(\frac{{10}}{9} > \frac{9}{{10}}\) nên \(0,{7^{\frac{{10}}{9}}} < 0,{7^{\frac{9}{{10}}}}\) hay \(\sqrt[9]{{0,{7^{10}}}} < \sqrt[{10}]{{0,{7^9}}}\).
Chương 2. Nitrogen và sulfur
Bài 4. Một số vấn đề về vi phạm pháp luật bảo vệ môi trường
Unit 2: Express Yourself
Chủ đề 6. Lịch sử bảo vệ chủ quyền, các quyền và lợi ích hợp pháp của Việt Nam ở biển Đông
Chương 6. Hợp chất carbonyl (Aldehyde - Ketone - Carboxylic acid
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11