Bài 5 trang 18

Đề bài

Một tam giác vuông có một cạnh góc vuông ngắn hơn cạnh huyền 8 cm. Tính độ dài của cạnh huyền, biết chu vi của tam giác bằng 30 cm.

Phương pháp giải - Xem chi tiết

Bước 1: Đặc cạnh huyền của tam giác là x (\(x > 8\)), xác định các cạnh còn lại qua mối quan hệ với cạnh huyền

Bước 2: Lập phương trình từ giả thiết chu vi biết chu vi được tính bằng công thức \(C = a + b + c\)

Bước 3: Giải phương trình vừa tìm được.

Lời giải chi tiết

Đặt cạnh huyền của tam giác là x (\(x > 8\))

Theo giải thiết ta tính được cạnh góc vuông là \(x - 8\)

Áp dụng định lý Pitago ta tính được cạnh góc vuông còn lại là \(\sqrt {{x^2} - {{\left( {x - 8} \right)}^2}}  = \sqrt {16x - 64} \)

Ta có chu vi của tam giác là \(x + \left( {x - 8} \right) + \sqrt {16x - 64}  = 30\)

\(\begin{array}{l} \Leftrightarrow \sqrt {16x - 64}  = 38 - 2x\\ \Rightarrow 16x - 64 = {\left( {38 - 2x} \right)^2}\\ \Rightarrow 16x - 64 = 1444 - 152x + 4{x^2}\\ \Rightarrow 4{x^2} - 168x + 1508 = 0\end{array}\)

\( \Rightarrow x = 13\) và \(x = 29\)

Thay \(x = 13\) và \(x = 29\) vào phương trình \(\sqrt {16x - 64}  = 38 - 2x\) ta thấy chỉ có \(x = 13\) thảo mãn phương trình

Vậy cạnh huyền có độ dài là 13 cm.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved