1. Nội dung câu hỏi
Giải các phương trình sau:
a) \({4^x} - {5.2^x} + 4 = 0\);
b) \({\left( {\frac{1}{9}} \right)^x} - 2.{\left( {\frac{1}{3}} \right)^{x - 1}} - 27 = 0\).
2. Phương pháp giải
Sử dụng kiến thức về giải phương trình mũ để giải: Với \(a > 0,a \ne 1\) thì \({a^x} = {a^\alpha } \Leftrightarrow x = \alpha \), tổng quát hơn: \({a^{u\left( x \right)}} = {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) = v\left( x \right)\)
3. Lời giải chi tiết
a) \({4^x} - {5.2^x} + 4 = 0 \) \( \Leftrightarrow {\left( {{2^x}} \right)^2} - {5.2^x} + 4 = 0 \) \( \Leftrightarrow \left( {{2^x} - 1} \right)\left( {{2^x} - 4} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}{2^x} = 1\\{2^x} = 4\end{array} \right. \) \( \Leftrightarrow \left[ \begin{array}{l}{2^x} = {2^0}\\{2^x} = {2^2}\end{array} \right. \) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\)
Vậy nghiệm của phương trình đã cho là: \(x = 0;x = 2\).
b) \({\left( {\frac{1}{9}} \right)^x} - 2.{\left( {\frac{1}{3}} \right)^{x - 1}} - 27 = 0 \) \( \Leftrightarrow {\left( {\frac{1}{3}} \right)^{2x}} - 6.{\left( {\frac{1}{3}} \right)^x} - 27 = 0 \) \( \Leftrightarrow \left[ {{{\left( {\frac{1}{3}} \right)}^x} + 3} \right]\left[ {{{\left( {\frac{1}{3}} \right)}^x} - 9} \right] = 0\)
\( \Leftrightarrow {\left( {\frac{1}{3}} \right)^x} - 9 = 0\left( {do\;{{\left( {\frac{1}{3}} \right)}^x} + 3 > 0\forall x \in \mathbb{R}} \right) \) \( \Leftrightarrow \;{\left( {\frac{1}{3}} \right)^x} = {\left( {\frac{1}{3}} \right)^{ - 2}} \) \( \Leftrightarrow x = - 2\)
Vậy nghiệm của phương trình đã cho là: \(x = - 2\).
Chủ đề 6. Lịch sử bảo vệ chủ quyền, các quyền và lợi ích hợp pháp của Việt Nam ở biển Đông
CHƯƠNG I. SỰ ĐIỆN LI
Bài 2. Luật Nghĩa vụ quân sự và trách nhiệm của học sinh
Chủ đề 5: Phối hợp kĩ thuật đánh cầu cao thuận tay
Phần 2. Địa lí khu vực và quốc gia
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11