Đề bài
Cho tam giác Abc cân tại A có góc A nhọn và H là trực tâm. Cho biết \(\widehat {BHC} = {150^o}\). Tính các góc của tam giác ABC.
Phương pháp giải - Xem chi tiết
- Áp dụng: tổng ba góc trong một tam giác bằng \({180^o}\) và đường cao trong tam giác để tính các số đo góc.
Lời giải chi tiết
Vẽ hai đường cao BE và CF của tam giác ABC.
Xét tam giác BHC ta có:
\(\widehat {HBC} + \widehat {HCB} = {180^o} - {150^o} = {30^o}\)
Xét hai tam giác vuông BCF và CBE ta có:
\(\widehat B + \widehat C = {180^o} - \left( {\widehat {HBC} + \widehat {HCB}} \right) = {180^o} - {30^o} = {150^o}\)
Do tam giác ABC cân tại A nên ta có:
\(\widehat B = \widehat C = \frac{{{{150}^o}}}{2} = {75^o}\)
\(\widehat {{A^{}}} = {180^o} - {150^o} = {30^o}\)
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7