Đề bài
Tính thể tích của một hình lăng trụ đứng đáy là một tứ giác như Hình 10, có độ dài AC = 5 m, BM = DN = 3 m, chiều cao của lăng trụ 7 m.
Phương pháp giải - Xem chi tiết
Ta chia tứ giác thành 2 tam giác rồi tính lần lượt diện tích từng tam giác, cộng hai diện tích tam giác đó ta được diện tích đáy rồi suy ra thể tích hình lăng trụ qua công thức V = Sđ . h
Lời giải chi tiết
Từ Hình 10, ta thấy đáy của hình lăng trụ là một tứ giác, ta chia tứ giác đó thành 2 tam giác.
Tam giác ABC có chiều cao BM = 3 m và cạnh đáy AC = 5 m, diện tích tam giác ABC là:
SABC = \(\dfrac{1}{2}\). BM . AC = \(\dfrac{1}{2}\) . 3 . 5 = \(\dfrac{{15}}{2}\) (m2).
Tam giác ADC có chiều cao DN = 3 m và cạnh đáy AC = 5 m, diện tích tam giác ADC là:
SADC = \(\dfrac{1}{2}\) . DN . AC = \(\dfrac{1}{2}\) . 3 . 5 = \(\dfrac{{15}}{2}\) (m2).
Diện tích đáy của hình lăng trụ đã cho là: Sđ = SABC + SADC = \(\dfrac{{15}}{2}\)+ \(\dfrac{{15}}{2}\) = 15 (m2).
Thể tích của hình lăng trụ là: V = Sđ . h = 15 . 7 = 105 (m3).
Đề kiểm tra giữa học kì 2
Chương V. Ánh sáng
Chương V. Ánh sáng
Unit 4. Music and Arts
Đề kiểm tra giữa học kì 1
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7