Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Đề bài
Rút gọn các biểu thức sau:
a) \(\sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} \)
b) \(\sqrt {{{\left( {3 - \sqrt {11} } \right)}^2}} \)
c) \(2\sqrt {{a^2}} \) với \(a \ge 0\)
d) \(3\sqrt {{{\left( {a - 2} \right)}^2}} \) với a < 2
Phương pháp giải - Xem chi tiết
Vận dụng định lý: Với biểu thức A có nghĩa
Áp dụng: \(\sqrt {{A^2}} = \left| A \right| = \left\{ \begin{array}{l}A\,\,{\rm{ khi \,\,A}} \ge 0\\ - A\,\,{\rm{ khi \,\,A < 0}}\end{array} \right.\)
Xét các trường hợp \(A \ge 0;A < 0\) để bỏ dấu GTTĐ
Lời giải chi tiết
a) \(\sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} = \left| {2 - \sqrt 3 } \right|\)
Ta có : \(4 > 3\) nên \(\sqrt 4 > \sqrt 3 \). Suy ra \(\sqrt 4 - \sqrt 3 > 0 \Leftrightarrow 2 - \sqrt 3 > 0\)
Vậy \(\sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} = 2 - \sqrt 3 \)
b) \(\sqrt {{{\left( {3 - \sqrt {11} } \right)}^2}} = \left| {3 - \sqrt {11} } \right|\)
\( = - \left( {3 - \sqrt {11} } \right)\) (vì \(3=\sqrt 9\) mà \(9<11\) nên \(\sqrt 9 < \sqrt {11} \), do đó \(3 - \sqrt {11} < 0\) )
\( = \sqrt {11} - 3.\)
c) \(2\sqrt {{a^2}} = 2\left| a \right| = 2a\) (vì \(a \ge 0\) nên \(2a \ge 0\)).
d) \(3\sqrt {{{\left( {a - 2} \right)}^2}} \)\( = 3\left| {a - 2} \right| = 3\left( {2 - a} \right)\) (vì \(a < 2\) nên \(a - 2 < 0\))
Tiếng Anh 9 mới tập 1
Đề kiểm tra 15 phút - Chương 4 - Sinh 9
Tải 20 đề kiểm tra 15 phút học kì 2 Văn 9
Bài 5: Tình hữu nghị giữa các dân tộc trên thế giới
PHẦN DI TRUYỀN VÀ BIẾN DỊ