Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Bài tập ôn chương III. Góc với đường tròn
Đề bài
Trong đường tròn \((O; R)\) cho một dây \(AB\) bằng cạnh hình vuông nội tiếp và dây \(BC\) bằng cạnh tam giác đều nội tiếp (điểm \(C\) và điểm \(A\) ở cùng một phía đối với \(BO\)). Tính các cạnh của tam giác \(ABC\) và đường cao \(AH\) của nó theo \(R.\)
Phương pháp giải - Xem chi tiết
Ta sử dụng kiến thức:
+) Trong một đường tròn, số đo góc nội tiếp bằng nửa số đo của cung bị chắn.
+) Nếu \(C\) là một điểm trên cung \(AB\) thì: \(sđ \overparen{AB}=sđ \overparen{AC}+sđ \overparen{CB}.\)
Lời giải chi tiết
Dây \(AB\) bằng cạnh hình vuông nội tiếp đường tròn \((O; R)\) nên \(AB = R\sqrt 2 \) và cung \(\overparen{AB}\) nhỏ có \(sđ \overparen{AB}=360^0:4=90^\circ\).
Dây \(BC\) bằng cạnh hình tam giác đều nội tiếp đường tròn \((O; R)\) nên \(BC = R\sqrt 3 \) và cung nhỏ \(\overparen{BC}\) có \(sđ \overparen{BC}= 360^0:3=120^\circ \).
\( \Rightarrow sđ \overparen{AC} = sđ \overparen{BC} - sđ \overparen{AB}\) \(=120^\circ - 90^\circ = 30^\circ \)
\( \Rightarrow \widehat {ABC} = \displaystyle {1 \over 2} sđ \overparen{AC}=15^\circ\) (tính chất góc nội tiếp)
Trong \(∆AHB\) có \(\widehat {AHB} = 90^\circ \)
\( \Rightarrow AH = AB.\sin \widehat {ABH} \)\(= R\sqrt 2 .\sin 15^\circ \approx 0,36R\)
Trong \(∆AHC\) có \(\widehat {AHC} = 90^\circ \)
\(\widehat {ACB} = \displaystyle{1 \over 2}\) sđ \(\overparen{AB}=45^\circ\) (tính chất góc nội tiếp)
\(AC =\displaystyle {{AH} \over {\sin \widehat {ACH}}} \)\(=\displaystyle {{AH} \over {\sin 45^\circ }} \approx {{0,36R} \over {\sin 45^\circ }} \approx 0,51R\)
CHƯƠNG II. ĐIỆN TỪ HỌC
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hóa học 9
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Toán lớp 9
Đề thi vào 10 môn Văn Bình Thuận
Đề thi vào 10 môn Toán Yên Bái