Đề bài
Xác định a để \(g'\left( x \right) \ge 0\forall x \in R,\) biết rằng
\(g\left( x \right) = \sin x - a\sin 2x - {1 \over 3}\sin 3x + 2ax.\)
Lời giải chi tiết
\(\eqalign{
& g'\left( x \right) = \cos x - 2a\cos 2x - \cos 3x + 2a \cr
& = 2a - 2a\cos 2x + \left( {\cos x - \cos 3x} \right)\cr &= 2a\left( {1 - \cos 2x} \right) + \left( {\cos x - \cos 3x} \right)\cr & = 2a.2{\sin ^2}x + \left( { - 2\sin 2x\sin \left( { - x} \right)} \right)\cr &{\rm{ }} = 4a{\sin ^2}x + 2\sin x\sin 2x \cr
& {\rm{ }} = 4a{\sin ^2}x + 4{\sin ^2}x\cos x \cr
& {\rm{ }} = 4{\sin ^2}x\left( {a + \cos x} \right). \cr} \)
Rõ ràng với a > 1 thì \(a + \cos x > 0\) và \({\sin ^2}x \ge 0\) với mọi \(x \in R\) nên với a > 1 thì \(g'\left( x \right) \ge 0,\forall x \in R.\)
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
Chủ đề 6. Lịch sử bảo vệ chủ quyền, các quyền và lợi ích hợp pháp của Việt Nam ở biển Đông
Unit 2: Generation gap
Tải 20 đề kiểm tra 15 phút - Chương 1
Chương 1. Trao đổi chất và chuyển hóa năng lượng ở sinh vật
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11