1. Nội dung câu hỏi
Xét tính liên tục của các hàm số sau trên tập xác định của chúng:
a) \(f\left( x \right) = \frac{{{x^3} + x + 1}}{{{x^2} - 3x + 2}}\)
b) \(f\left( x \right) = \frac{{\cos x}}{{{x^2} + 3x - 4}}\)
2. Phương pháp giải
Các hàm phân thức hữu tỉ (thương của hai đa thức) liên tục trên tập xác định của chúng.
3. Lời giải chi tiết
a) Tập xác định của hàm số f(x) là \(\left( { - \infty ,1} \right) \cup \left( {1;2} \right) \cup \left( {2; + \infty } \right)\).
Do đó, hàm số f(x) liên tục trên các khoảng \(\left( { - \infty ,1} \right);\left( {1;2} \right);\left( {2; + \infty } \right)\)
b) Tập xác định của hàm số f(x) là \(\left( { - \infty , - 4} \right) \cup \left( { - 4;1} \right) \cup \left( {1; + \infty } \right)\).
Do đó, hàm số f(x) liên tục trên các khoảng \(\left( { - \infty , - 4} \right);\left( { - 4;1} \right);\left( {1; + \infty } \right)\).
Hello!
Chương 5. Mối quan hệ giữa các quá trình sinh lí trong cơ thể sinh vật và một số ngành nghề liên quan đến sinh học cơ thể
Ngữ âm
CHƯƠNG VI: HIĐROCABON KHÔNG NO
Unit 2: Personnal Experiences - Kinh nghiệm cá nhân
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11