1. Nội dung câu hỏi
Chứng tỏ rằng các phương trình sau có nghiệm trong khoảng tương ứng:
a) \({x^2} = \sqrt {x + 1} \), trong khoảng \(\left( {1;2} \right)\)
b) \(\cos x = x,\) trong khoảng \(\left( {0;1} \right)\)
2. Phương pháp giải
Nếu hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ {a;b} \right]\) và \(f\left( a \right).f\left( b \right) < 0\) thì tồn tại ít nhất một điểm \(c \in \left[ {a;b} \right]\) sao cho \(f\left( c \right) = 0\)
3. Lời giải chi tiết
a) Hàm số \(f\left( x \right) = \sqrt {x + 1} - {x^2}\) liên tục trên đoạn \(\left[ {1;2} \right]\).
Mà \(f\left( 1 \right) = 1 - \sqrt 2 < 0,f\left( 2 \right) = 4 - \sqrt 2 > 0.\)
Do đó, theo tính chất của hàm số liên tục, tồn tại điểm \(c \in \left( {1;2} \right)\) sao cho \(f\left( c \right) = 0\)
b) Hàm số \(f\left( x \right) = \cos x - x\) liên tục trên đoạn \(\left[ {0;1} \right]\).
Mà \(f\left( 0 \right) = 1 > 0,f\left( 1 \right) = \cos 1 - 1 < 0.\)
Do đó, theo tính chất của hàm số liên tục, tồn tại điểm \(c \in \left( {0;1} \right)\) sao cho \(f\left( c \right) = 0\).
B. ĐỊA LÍ KHU VỰC VÀ QUỐC GIA
Bài 13: Hydrocarbon không no
Grammar Expansion
Bài 5: Một số hợp chất quan trọng của nitrogen
Chủ đề 1: Vai trò, tác dụng của môn bóng đá và kĩ thuật đá bóng bằng mu bàn chân
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11