1. Nội dung câu hỏi
Tổng \(1 + 11 + 101 + 1001 + ..... + 100...01\) (12 số hạng) bằng:
A. \(\frac{{{{10}^{11}} + 107}}{9}\)
B. \(\frac{{{{10}^{12}} + 98}}{9}\)
C. \(\frac{{{{10}^{12}} + 107}}{9}\)
D. \(\frac{{{{10}^{11}} + 98}}{9}\)
2. Phương pháp giải
Ta có
\(\begin{array}{l}1 + 11 + 101 + 1001 + ..... + 100...01\\ = 1 + \left( {10 + 1} \right) + \left( {100 + 1} \right) + ... + \left( {100...0 + 1} \right)\\ = 1.12 + \left( {10 + 100 + 1000 + ... + 100...0} \right)\end{array}\)
Xét cấp số nhân \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1} = 10\) và công bội \(q = 10\). Ta thấy tổng cần tính sẽ bằng \(12 + \left( {{u_1} + {u_2} + ... + {u_{11}}} \right)\). Sử dụng công thức \({S_n} = {u_1}\frac{{1 - {q^n}}}{{1 - q}}\) để tính tổng của các số hạng trong cấp số nhân đó.
3. Lời giải chi tiết
Ta có
\(\begin{array}{l}1 + 11 + 101 + 1001 + ..... + 100...01\\ = 1 + \left( {10 + 1} \right) + \left( {100 + 1} \right) + ... + \left( {100...0 + 1} \right)\\ = 1.12 + \left( {10 + 100 + 1000 + ... + 100...0} \right)\end{array}\)
Xét tổng \(10 + 100 + 1000 + ... + 100...0\). Ta thấy tổng này gồm 11 số hạng.
Xét cấp số nhân \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1} = 10\) và công bội \(q = 10\). Ta nhận thấy:
\(10 + 100 + 1000 + ... + 100...0 = {u_1} + {u_2} + {u_3} + ... + {u_{11}}\).
Vậy tổng trên có giá trị là \({S_{11}} = {u_1}\frac{{1 - {q^{11}}}}{{1 - q}} = 10\frac{{1 - {{10}^{11}}}}{{1 - 10}} = \frac{{10\left( {{{10}^{11}} - 1} \right)}}{9} = \frac{{{{10}^{12}} - 10}}{9}\)
Suy ra tổng cần tính bằng \(12 + \frac{{{{10}^{12}} - 10}}{9} = \frac{{{{10}^{12}} + 98}}{9}\)
Đáp án đúng là B.
CHƯƠNG III: DÒNG ĐIỆN TRONG CÁC MÔI TRƯỜNG
Chuyên đề 3: Một số yếu tố vẽ kĩ thuật
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Giáo dục kinh tế và pháp luật lớp 11
Phần một. CÔNG DÂN VỚI KINH TẾ
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11