Đề bài
Cho hình bình hành ABCD. Lấy các điểm M, N, P thoả mãn \(\overrightarrow {AM} = \frac{1}{2}\overrightarrow {AB} ,\overrightarrow {AN} = \frac{1}{5}\overrightarrow {AC} ,\overrightarrow {AP} = \frac{1}{3}\overrightarrow {AD} \). Đặt \(\overrightarrow {AB} = \overrightarrow a ,\overrightarrow {AD} = \overrightarrow b \). Biểu thị các vectơ \(\overrightarrow {AN} ,\overrightarrow {MN} ,\overrightarrow {NP} \) theo các vectơ \(\overrightarrow a ,\overrightarrow b \) và chứng minh ba điểm M, N, P thẳng hàng.
Phương pháp giải - Xem chi tiết
Bước 1: Xác định vị trí các điểm M, N, P trên các cạnh AB, AC, AD
Bước 2: Sử dụng các quy tắc để biểu diễn các vectơ theo \(\overrightarrow {AB} \) và \(\overrightarrow {AD} \)
Bước 3: Sử dụng điều kiện \(\overrightarrow {MN} = k\overrightarrow {NP} \) chứng minh M, N, P thẳng hàng.
Lời giải chi tiết
Theo giả thiết, M là trung điểm AB, N nằm giữa A và C, P nằm giữa A và D
a) Ta có:
+ \(\overrightarrow {AN} = \frac{1}{5}\overrightarrow {AC} \). Theo quy tắc hình bình hành, \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \) \( \Rightarrow \overrightarrow {AN} = \frac{1}{5}\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) = \frac{1}{5}\left( {\overrightarrow a + \overrightarrow b } \right)\)
+ \(\overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} \)mà \(\overrightarrow {AN} = \frac{1}{5}\left( {\overrightarrow a + \overrightarrow b } \right)\), \(\overrightarrow {AM} = \frac{1}{2}\overrightarrow {AB} = \frac{1}{2}\overrightarrow a \)
nên \(\overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} = \frac{1}{5}\left( {\overrightarrow a + \overrightarrow b } \right) - \frac{1}{2}\overrightarrow a = - \frac{3}{{10}}\overrightarrow a + \frac{1}{5}\overrightarrow b \)
+ \(\overrightarrow {NP} = \overrightarrow {AP} - \overrightarrow {AN} \) mà \(\overrightarrow {AN} = \frac{1}{5}\left( {\overrightarrow a + \overrightarrow b } \right)\), \(\overrightarrow {AP} = \frac{1}{3}\overrightarrow {AD} = \frac{1}{3}\overrightarrow b \)
nên \(\overrightarrow {NP} = \overrightarrow {AP} - \overrightarrow {AN} = \frac{1}{3}\overrightarrow b - \frac{1}{5}\left( {\overrightarrow a + \overrightarrow b } \right) = - \frac{1}{5}\overrightarrow a + \frac{2}{{15}}\overrightarrow b \)
Vậy \(\overrightarrow {AN} = \frac{1}{5}\left( {\overrightarrow a + \overrightarrow b } \right)\); \(\overrightarrow {MN} = - \frac{3}{{10}}\overrightarrow a + \frac{1}{5}\overrightarrow b \); \(\overrightarrow {NP} = - \frac{1}{5}\overrightarrow a + \frac{2}{{15}}\overrightarrow b \)
b) Theo a, \(\overrightarrow {MN} = - \frac{3}{{10}}\overrightarrow a + \frac{1}{5}\overrightarrow b \); \(\overrightarrow {NP} = - \frac{1}{5}\overrightarrow a + \frac{2}{{15}}\overrightarrow b \) \( \Rightarrow \overrightarrow {MN} = - \frac{3}{{10}}\overrightarrow a + \frac{1}{5}\overrightarrow b = \frac{3}{2}\left( { - \frac{1}{5}\overrightarrow a + \frac{2}{{15}}\overrightarrow b } \right) = \frac{3}{2}\overrightarrow {NP} \)
\( \Rightarrow \overrightarrow {MN} \) và \(\overrightarrow {NP} \) cùng phương. Vậy 3 điểm M, N, P thẳng hàng.
Chủ đề 1. Nền kinh tế và các chủ thể của nền kinh tế
Giang
Chương 3. Các cuộc cách mạng công nghiệp trong lịch sử thế giới
Test Yourself 3
Chủ đề 5. Văn minh Đông Nam Á
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10