1. Nội dung câu hỏi
Cho hình vuông \({H_1}\) có cạnh bằng a. Chia mỗi cạnh của hình vuông này thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông \({H_2}\) Lặp lại cách làm như trên với hình vuông \({H_2}\) để được hình vuông \({H_3}\).
Tiếp tục quá trình trên ta nhận được dãy hình vuông \({H_1},\,{H_2},\,{H_3},...,{H_n},...\) Gọi \({s_n}\) là diện tích của hình vuông \({H_n}\).
2. Phương pháp giải
Tính lần lượt các cạnh hình vuông \({H_2}\), diện tích hình vuông \({H_2}\) rồi suy ra công thức tính diện tích \({H_1},\,{H_2},\,{H_3},...,{H_n},...\) Dùng công thức tính tổng cấp số nhân lùi vô hạn để tính ra diện tích của hình vuông \({H_n}\).
3. Lời giải chi tiết
Cạnh của hình vuông \({H_2}\) là \({a_2} = \sqrt {{{\left( {\frac{a}{4}} \right)}^2} + {{\left( {\frac{{3a}}{4}} \right)}^2}} = \sqrt {\frac{5}{8}} a.\)
Khi đó \({s_2} = \frac{5}{8}{a^2} = \frac{5}{8}{s_1}\).
Lí luận tương tự, ta có \({s_3} = \frac{5}{8}{s_2},...,{s_n} = \frac{5}{8}{s_{n - 1}} = {\left( {\frac{5}{8}} \right)^{n - 1}}{a^2}\). Từ đó
\(T = {s_1} + {s_2} + ... + {s_n} + ... = {a^2}\left[ {1 + \frac{5}{8} + {{\left( {\frac{5}{8}} \right)}^2} + ... + {{\left( {\frac{5}{8}} \right)}^{n - 1}} + ...} \right] = \frac{{8{a^2}}}{3}\).
Chương 1. Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
Review Unit 4
CHƯƠNG 4. SINH SẢN
Chủ đề 5. Một số cuộc cải cách trong lịch sử Việt Nam (trước năm 1858)
Chương 3: Đại cương hóa học hữu cơ
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11