SBT Toán 11 - Kết nối tri thức với cuộc sống tập 1

Câu hỏi 5.44 - Mục Bài tập trang 89

1. Nội dung câu hỏi

Cho hình vuông \({H_1}\) có cạnh bằng a. Chia mỗi cạnh của hình vuông này thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông \({H_2}\) Lặp lại cách làm như trên với hình vuông \({H_2}\) để được hình vuông \({H_3}\). 

Tiếp tục quá trình trên ta nhận được dãy hình vuông \({H_1},\,{H_2},\,{H_3},...,{H_n},...\) Gọi \({s_n}\) là diện tích của hình vuông \({H_n}\).


2. Phương pháp giải

Tính lần lượt các cạnh hình vuông \({H_2}\), diện tích hình vuông \({H_2}\) rồi suy ra công thức tính diện tích \({H_1},\,{H_2},\,{H_3},...,{H_n},...\) Dùng công thức tính tổng cấp số nhân lùi vô hạn để tính ra diện tích của hình vuông \({H_n}\).

 

3. Lời giải chi tiết 

Cạnh của hình vuông \({H_2}\) là \({a_2} = \sqrt {{{\left( {\frac{a}{4}} \right)}^2} + {{\left( {\frac{{3a}}{4}} \right)}^2}}  = \sqrt {\frac{5}{8}} a.\)

Khi đó \({s_2} = \frac{5}{8}{a^2} = \frac{5}{8}{s_1}\).

Lí luận tương tự, ta có \({s_3} = \frac{5}{8}{s_2},...,{s_n} = \frac{5}{8}{s_{n - 1}} = {\left( {\frac{5}{8}} \right)^{n - 1}}{a^2}\). Từ đó

\(T = {s_1} + {s_2} + ... + {s_n} + ... = {a^2}\left[ {1 + \frac{5}{8} + {{\left( {\frac{5}{8}} \right)}^2} + ... + {{\left( {\frac{5}{8}} \right)}^{n - 1}} + ...} \right] = \frac{{8{a^2}}}{3}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved