Giải Bài 55 trang 85 sách bài tập toán 7 - Cánh diều

Đề bài

Cho tam giác ABC vuông tại A, M là trung điểm của AC.

a) Vẽ E là hình chiếu của A trên đường thẳng BM.

b) Vẽ F là hình chiếu của C trên đường thẳng BM.

c) Chứng minh BE + BF > 2AB.

 

 

Phương pháp giải - Xem chi tiết

- Vẽ hình chiếu là vẽ đường vuông góc với chân đường vuông góc là hình chiếu.

- Sử dụng đường vuông góc và đường xiên để chứng minh BE + BF > 2AB

 

 

Lời giải chi tiết

a)

 

b)

 

c) Xét ∆MAE và ∆MCF có:

\(\widehat {AEM} = \widehat {CFM}\left( { = 90^\circ } \right)\)

MA = MC (vì M là trung điểm của AC),

\(\widehat {AME} = \widehat {CMF}\) (hai góc đối đỉnh)

Do đó ∆MAE = ∆MCF (cạnh huyền – góc nhọn).

Suy ra ME = MF (hai cạnh tương ứng).

Ta có BA và BM lần lượt là đường vuông góc và đường xiên kẻ từ điểm B xuống đường thẳng AC

Suy ra AB < BM.

Hay AB < BE + EM (1) và AB < BF – MF (2)

Cộng vế theo vế của (1) và (2) ta có:

AB + AB < BE + EM + BF – MF

Mà ME = MF

Do đó 2AB < BE + BF.

Vậy BE + BF > 2AB.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved