1. Nội dung câu hỏi
Cho mặt phẳng \(\left( P \right)\), ba điểm \(A\), \(B\), \(C\) không thẳng hàng và không nằm trên \(\left( P \right)\). Chứng minh rằng nếu ba đường thẳng \(AB\), \(BC\), \(CA\) cắt mặt phẳng \(\left( P \right)\) lần lượt tại các điểm \(M\), \(N\), \(P\) thì \(M\), \(N\), \(P\) thẳng hàng.
2. Phương pháp giải
Chứng minh rằng 3 điểm \(M\), \(N\), \(P\) cùng thuộc giao tuyến của \(\left( P \right)\) và \(\left( {ABC} \right)\).
3. Lời giải chi tiết
Do ba điểm \(A\), \(B\), \(C\) không thẳng hàng, nên tồn tại một mặt phẳng \(\left( Q \right)\) đi qua 3 điểm này.
Vì \(M \in AB\), mà \(AB \subset \left( Q \right)\) nên \(M \in \left( Q \right)\). Mặt khác, do \(M \in \left( P \right)\) nên hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) có điểm chung. Từ đó ta suy ra tồn tại giao tuyến của \(\left( P \right)\) và \(\left( Q \right)\), và \(M\) nằm trên giao tuyến này.
Chứng minh tương tự, ta cũng suy ra \(N\) và \(P\) cũng nằm trên giao tuyến của \(\left( P \right)\) và \(\left( Q \right)\). Do đó, ba điểm \(M\), \(N\), \(P\) thẳng hàng.
Bài toán được chứng minh.
Bài 10: Công thức phân tử hợp chất hữu cơ
Bài 1: Mở đầu về cân bằng hóa học
CHƯƠNG II. CẢM ỨNG
SBT Ngữ văn 11 - Cánh Diều tập 1
Chuyên đề 3. Vệ sinh an toàn thực phẩm
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11